I once had a bad dream.

I started good, a sunny day. I had just fixed an issue and push it to my fork, in order to create a Pull Request. I was happy. It felt awesome to have found a fix so elegant. Two lines of code.

But then, something happened. A cloud appear in the sky and partially hide the sun. github triggered the end to end test suite. You could see the waiting icon, you could almost hear the engines starting, ... a lightning and a thunder appeared in the sky, the sky turned dark and the e2e test started in our private jenkins server.

1 hour passed by... 2 hours .... the e2e tests still running ... 4 hours, not even 50%. Finally, I had to go, get some dinner, get some rest, so I decided to look at it the next day.

Sleep was not good. Dreaming the tests would fail and the deadline be missed .... I couldn't sleep no more so I wake up early in the morning, before sunrise. The computer still opened was lightning up the room. Out, the storm turned out to be a heavy rain. And the tests did not passed! 4 hours and half after starting them, so half an hour after leaving for dinner, and there was a fail test.

Finding out what went wrong took 2 hours...it was not even related to the code, but an infrastructure issue. A timeout when connecting to a mirror which was being restarted when the tests run. Apparently we hit a maintenance window.

Damn! So let's just "restart" the tests. This time, I decided to put an alarm 4 hours after and switch to another task, just to avoid the anxiety of the previous evening looking at the results. 4 hours passed by, and the tests are good. It is not raining anymore, a git of sun is filtering throw the window, hope is in the air. 4 more hours, and the tests still have not failed. Going to dinner and bed again and putting the alarm early in the morning. First thing in the morning I looked at the tests ... running again, feels good. All tests have passed and there is only one final "cleanup" state. Shower, breakfeast, sun is shining again!

Finally, all is green, so let's go and push the merge button ... oh oh ... clouds hide the sun again ... where is the merge button?? no way, there is a conflict with the code in master and I can't merge!!! I can't merge!!! shocked, I looked into the history ... John merged a PR overnight that was touching the same file ... hopeless I start crying on my desk...

Scared?

This is not so different on what could happen if we were running the whole e2e test suite in the SUSE Manager (uyuni) Pull Requests. However, not running any e2e tests has also a bad consequence. We find the issues after code has been merged in master, and then we spend days looking at what could have caused this, reverting commits, and starting again.

However, if we could run a subset of the e2e tests, we could shorten the time it takes and so run them at the PR level, so no broken code could get merged.

The thing is , how do we select which tests to run?

This project is about using Machine Learning to do predictive test selection, thus selecting which tests to run based on the history of previous test runs.

Inspired by: https://engineering.fb.com/2018/11/21/developer-tools/predictive-test-selection/

Looking for hackers with the skills:

ml ci qa ai

This project is part of:

Hack Week 20

Activity

  • almost 5 years ago: PSuarezHernandez liked this project.
  • almost 5 years ago: llansky3 liked this project.
  • almost 5 years ago: ories liked this project.
  • almost 5 years ago: j_renner liked this project.
  • almost 5 years ago: RDiasMateus liked this project.
  • almost 5 years ago: pagarcia liked this project.
  • almost 5 years ago: jordimassaguerpla added keyword "ci" to this project.
  • almost 5 years ago: jordimassaguerpla added keyword "qa" to this project.
  • almost 5 years ago: jordimassaguerpla added keyword "ai" to this project.
  • almost 5 years ago: jordimassaguerpla added keyword "ml" to this project.
  • almost 5 years ago: jordimassaguerpla originated this project.

  • Comments

    • llansky3
      almost 5 years ago by llansky3 | Reply

      This could have some wider potential - clever picking of tests to shorten the time yet maximize the findings (and learning that in time based on test execution history to predict). I can see how that saves tons of money in cases where test on a real industrial machines need to be executed (e.g. cost of running engine on a test bed is 5-10k$ per day so there is huge difference if you need to run for 1 or 3 days)

    Similar Projects

    Kubernetes-Based ML Lifecycle Automation by lmiranda

    Description

    This project aims to build a complete end-to-end Machine Learning pipeline running entirely on Kubernetes, using Go, and containerized ML components.

    The pipeline will automate the lifecycle of a machine learning model, including:

    • Data ingestion/collection
    • Model training as a Kubernetes Job
    • Model artifact storage in an S3-compatible registry (e.g. Minio)
    • A Go-based deployment controller that automatically deploys new model versions to Kubernetes using Rancher
    • A lightweight inference service that loads and serves the latest model
    • Monitoring of model performance and service health through Prometheus/Grafana

    The outcome is a working prototype of an MLOps workflow that demonstrates how AI workloads can be trained, versioned, deployed, and monitored using the Kubernetes ecosystem.

    Goals

    By the end of Hack Week, the project should:

    1. Produce a fully functional ML pipeline running on Kubernetes with:

      • Data collection job
      • Training job container
      • Storage and versioning of trained models
      • Automated deployment of new model versions
      • Model inference API service
      • Basic monitoring dashboards
    2. Showcase a Go-based deployment automation component, which scans the model registry and automatically generates & applies Kubernetes manifests for new model versions.

    3. Enable continuous improvement by making the system modular and extensible (e.g., additional models, metrics, autoscaling, or drift detection can be added later).

    4. Prepare a short demo explaining the end-to-end process and how new models flow through the system.

    Resources

    Project Repository

    Updates

    1. Training pipeline and datasets
    2. Inference Service py


    MCP Trace Suite by r1chard-lyu

    Description

    This project plans to create an MCP Trace Suite, a system that consolidates commonly used Linux debugging tools such as bpftrace, perf, and ftrace.

    The suite is implemented as an MCP Server. This architecture allows an AI agent to leverage the server to diagnose Linux issues and perform targeted system debugging by remotely executing and retrieving tracing data from these powerful tools.

    • Repo: https://github.com/r1chard-lyu/systracesuite
    • Demo: Slides

    Goals

    1. Build an MCP Server that can integrate various Linux debugging and tracing tools, including bpftrace, perf, ftrace, strace, and others, with support for future expansion of additional tools.

    2. Perform testing by intentionally creating bugs or issues that impact system performance, allowing an AI agent to analyze the root cause and identify the underlying problem.

    Resources

    • Gemini CLI: https://geminicli.com/
    • eBPF: https://ebpf.io/
    • bpftrace: https://github.com/bpftrace/bpftrace/
    • perf: https://perfwiki.github.io/main/
    • ftrace: https://github.com/r1chard-lyu/tracium/


    Local AI assistant with optional integrations and mobile companion by livdywan

    Description

    Setup a local AI assistant for research, brainstorming and proof reading. Look into SurfSense, Open WebUI and possibly alternatives. Explore integration with services like openQA. There should be no cloud dependencies. Mobile phone support or an additional companion app would be a bonus. The goal is not to develop everything from scratch.

    User Story

    • Allison Average wants a one-click local AI assistent on their openSUSE laptop.
    • Ash Awesome wants AI on their phone without an expensive subscription.

    Goals

    • Evaluate a local SurfSense setup for day to day productivity
    • Test opencode for vibe coding and tool calling

    Timeline

    Day 1

    • Took a look at SurfSense and started setting up a local instance.
    • Unfortunately the container setup did not work well. Tho this was a great opportunity to learn some new podman commands and refresh my memory on how to recover a corrupted btrfs filesystem.

    Day 2

    • Due to its sheer size and complexity SurfSense seems to have triggered btrfs fragmentation. Naturally this was not visible in any podman-related errors or in the journal. So this took up much of my second day.

    Day 3

    Day 4

    • Context size is a thing, and models are not equally usable for vibe coding.
    • Through arduous browsing for ollama models I did find some like myaniu/qwen2.5-1m:7b with 1m but even then it is not obvious if they are meant for tool calls.

    Day 5

    • Whilst trying to make opencode usable I discovered ramalama which worked instantly and very well.

    Outcomes

    surfsense

    I could not easily set this up completely. Maybe in part due to my filesystem issues. Was expecting this to be less of an effort.

    opencode

    Installing opencode and ollama in my distrobox container along with the following configs worked for me.

    When preparing a new project from scratch it is a good idea to start out with a template.

    opencode.json

    ``` {


    Uyuni Health-check Grafana AI Troubleshooter by ygutierrez

    Description

    This project explores the feasibility of using the open-source Grafana LLM plugin to enhance the Uyuni Health-check tool with LLM capabilities. The idea is to integrate a chat-based "AI Troubleshooter" directly into existing dashboards, allowing users to ask natural-language questions about errors, anomalies, or performance issues.

    Goals

    • Investigate if and how the grafana-llm-app plug-in can be used within the Uyuni Health-check tool.
    • Investigate if this plug-in can be used to query LLMs for troubleshooting scenarios.
    • Evaluate support for local LLMs and external APIs through the plugin.
    • Evaluate if and how the Uyuni MCP server could be integrated as another source of information.

    Resources

    Grafana LMM plug-in

    Uyuni Health-check


    Docs Navigator MCP: SUSE Edition by mackenzie.techdocs

    MCP Docs Navigator: SUSE Edition

    Description

    Docs Navigator MCP: SUSE Edition is an AI-powered documentation navigator that makes finding information across SUSE, Rancher, K3s, and RKE2 documentation effortless. Built as a Model Context Protocol (MCP) server, it enables semantic search, intelligent Q&A, and documentation summarization using 100% open-source AI models (no API keys required!). The project also allows you to bring your own keys from Anthropic and Open AI for parallel processing.

    Goals

    • [ X ] Build functional MCP server with documentation tools
    • [ X ] Implement semantic search with vector embeddings
    • [ X ] Create user-friendly web interface
    • [ X ] Optimize indexing performance (parallel processing)
    • [ X ] Add SUSE branding and polish UX
    • [ X ] Stretch Goal: Add more documentation sources
    • [ X ] Stretch Goal: Implement document change detection for auto-updates

    Coming Soon!

    • Community Feedback: Test with real users and gather improvement suggestions

    Resources


    Try out Neovim Plugins supporting AI Providers by enavarro_suse

    Description

    Experiment with several Neovim plugins that integrate AI model providers such as Gemini and Ollama.

    Goals

    Evaluate how these plugins enhance the development workflow, how they differ in capabilities, and how smoothly they integrate into Neovim for day-to-day coding tasks.

    Resources