Project Description

multipathd is multi-threaded, but it uses a single lock that essentially kills most benefits of the additional threads. Also, it busy-waits or sleeps in various places, in part with locks held, which is of course very bad for a program with lots of asynchronous things going on.

Goal for this Hackweek

Eliminate busy-waiting. Assess which of the various threads are actually necessary. Rework the path checker to be truly asynchronous. Also, re-think configuration changes (reconfigure). Currently this works with user-space RCU, but I believe that's not optimal. It's dangerous to continue servicing uevents and path checkers while a configuration change is pending.

Looking for hackers with the skills:

c multipath storage

This project is part of:

Hack Week 20

Activity

  • over 4 years ago: mkubecek liked this project.
  • over 4 years ago: mwilck added keyword "multipath" to this project.
  • over 4 years ago: mwilck added keyword "storage" to this project.
  • over 4 years ago: mwilck added keyword "c" to this project.
  • over 4 years ago: mwilck originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Add a machine-readable output to dmidecode by jdelvare

    Description

    There have been repeated requests for a machine-friendly dmidecode output over the last decade. During Hack Week 19, 5 years ago, I prepared the code to support alternative output formats, but didn't have the time to go further. Last year, Jiri Hnidek from Red Hat Linux posted a proof-of-concept implementation to add JSON output support. This is a fairly large pull request which needs to be carefully reviewed and tested.

    Goals

    Review Jiri's work and provide constructive feedback. Merge the code if acceptable. Evaluate the costs and benefits of using a library such as json-c.


    Improve the picotm Transaction Manager by tdz

    Picotm is a system-level transaction manager. It provides transactional semantics to low-level C operations, such as

    • memory access,
    • modifying data structures,
    • (some) file I/O, and
    • common interfaces from the C Standard Library and POSIX.

    Picotm also handles error detection and recovery for all it's functionality. It's fully modular, so new functionality can be added.

    For the Hackweek, I want to dedicate some time to picotm. I want to finish some of the refactoring work that I have been working on. If there's time left, I'd like to investigate two-phase commits and how to support them in picotm.

    Picotm is available at http://picotm.org/.


    Smart lighting with Pico 2 by jmodak

    Description

    I am trying to create a smart-lighting project with a Raspberry Pi Pico that reacts to a movie's visuals and audio that involves combining two distinct functions: ambient screen lighting(visual response) and sound-reactive lighting(audio response)

    Goals

    • Visuals: Capturing the screen's colour requires an external device to analyse screen content and send colour data to the MCU via serial communication.
    • Audio: A sound sensor module connected directly to the Pico that can detect sound volume.
    • Pico 2W: The MCU receives data fro, both inputs and controls an LED strip.

    Resources

    • Raspberry Pi Pico 2 W
    • RGB LED strip
    • Sound detecting sensor
    • Power supply
    • breadboard and wires


    Port OTPClient to GTK >= 4.18 by pstivanin

    Project Description

    OTPClient is currently using GTK3 and cannot easily be ported to GTK4. Since GTK4 came out, there have been quite some big changes. Also, there are now some new deprecation that will take effect with GTK5 (and are active starting from 4.10 as warnings), so I need to think ahead and port OTPClient without using any of those deprecated features.

    Goal for this Hackweek

    • fix the last 3 opened issues (https://github.com/paolostivanin/OTPClient/issues/402, https://github.com/paolostivanin/OTPClient/issues/404, https://github.com/paolostivanin/OTPClient/issues/406) and release a new version
    • continue the rewrite from where we left last year
    • if possible, finally close this 6 years old issue: https://github.com/paolostivanin/OTPClient/issues/123


    x64id: An x86/x64 instruction disassembler by m.crivellari

    Description

    This is an old side project. An x86/x64 machine code decoder. It is useful to get instructions' length and identify each of its fields.

    Example:

    C7 85 68 FF FF FF 00 00 00 00

    This is the instruction:

    MOV DWORD PTR SS:[LOCAL.38],0

    What follows are some of the information collected by the disassembler, based on the specific instruction:

    RAW bytes (hex): C7 85 68 FF FF FF 00 00 00 00
    Instr. length: 10
    Print instruction fields:
            Located Prefixes 0:
    
            OP: 0xC7
            mod_reg_rm: 0x85
            disp (4): 0xFFFFFF68
            Iimm: 0x0
    

    Lacks the mnemonic representation: from the previous machine code is not able to produce the "MOV..." instruction, for example.

    Goals

    The goal is almost easy: partially implement the mnemonic representation. I have already started during the weekend, likely tomorrow I will push the branch!

    Resources

    Progress

    Let's consider this example:

    [...other bytes...] 43 89 44 B5 00 01 00 [...other bytes...]