Project Description

So you have an idea for a machine learning project for HackWeek. Have you thought about what tools you'll be using? Choosing the right set of machine learning tools and making them work together can be time consuming, not to mention the unavoidable learning curve. Perhaps you could use some help with that.

The SUSE AI/ML team has the answer: FuseML - an open source machine learning DevOps orchestrator that can get your machine learning projects up and running as easy as lighting a fuse.

FuseML started as a spin off project Carrier. Think "Carrier for Machine Learning": you write your ML application using one of the popular machine learning libraries (e.g. scikit-learn, TensorFlow, PyTorch, XGBoost) and FuseML takes care of all operations necessary to get your machine learning models in action, so you can concentrate on your code.

FuseML workflow

The catch: FuseML is still in a pre-alpha state, although it can already be used to showcase basic features. While using it, you may run into some corner cases we haven't covered yet, but you'll not be alone: we're here to help.

The rewards: access to expert knowledge in AI/ML and a chance to have your ML project published into the FuseML gallery of sample applications.

What you'll need: to install and use FuseML, you'll need a kubernetes cluster. If you don't already have one handy, or if you're low on hardware resources, you can install minikube, kind or k3s on your machine.

Goal for this Hackweek

  • discover new use cases and AI/ML tools to be enabled for FuseML
  • offer assistance and guidelines on AI/ML best practices and tools in the context of FuseML
  • pimp up FuseML's gallery of sample applications

Resources

This project is part of:

Hack Week 20

Activity

  • about 4 years ago: acho liked this project.
  • about 4 years ago: ories liked this project.
  • about 4 years ago: afesta liked this project.
  • about 4 years ago: jsuchome joined this project.
  • about 4 years ago: flaviosr liked this project.
  • about 4 years ago: flaviosr joined this project.
  • about 4 years ago: stefannica started this project.
  • about 4 years ago: stefannica added keyword "#fuseml" to this project.
  • about 4 years ago: stefannica added keyword "#ai" to this project.
  • about 4 years ago: stefannica added keyword "#machinelearning" to this project.
  • about 4 years ago: stefannica added keyword "#kubernetes" to this project.
  • about 4 years ago: stefannica added keyword "#artificial-intelligence" to this project.
  • about 4 years ago: stefannica added keyword "#mlops" to this project.
  • about 4 years ago: stefannica added keyword "#mlflow" to this project.
  • about 4 years ago: stefannica added keyword "#sklearn" to this project.
  • about 4 years ago: stefannica added keyword "#pytorch" to this project.
  • about 4 years ago: stefannica added keyword "#ternsorflow" to this project.
  • about 4 years ago: stefannica originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Make more sense of openQA test results using AI by livdywan

    Description

    AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.

    User Story

    Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?

    Goals

    • Leverage a chat interface to help Allison
    • Create a model from scratch based on data from openQA
    • Proof of concept for automated analysis of openQA test results

    Bonus

    • Use AI to suggest solutions to merge conflicts
      • This would need a merge conflict editor that can suggest solving the conflict
    • Use image recognition for needles

    Resources

    Timeline

    Day 1

    • Conversing with open-webui to teach me how to create a model based on openQA test results

    Day 2

    Highlights

    • I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
    • Convincing the chat interface to produce code specific to my use case required very explicit instructions.
    • Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
    • Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses

    Outcomes

    • Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
    • Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.


    COOTWbot by ngetahun

    Project Description

    At SCC, we have a rotating task of COOTW (Commanding Office of the Week). This task involves responding to customer requests from jira and slack help channels, monitoring production systems and doing small chores. Usually, we have documentation to help the COOTW answer questions and quickly find fixes. Most of these are distributed across github, trello and SUSE Support documentation. The aim of this project is to explore the magic of LLMs and create a conversational bot.

    Goal for this Hackweek

    • Build data ingestion Data source:
      • SUSE KB docs
      • scc github docs
      • scc trello knowledge board
    • Test out new RAG architecture

    • https://gitlab.suse.de/ngetahun/cootwbot


    AI for product management by a_jaeger

    Description

    Learn about AI and how it can help myself

    What are the jobs that a PM does where AI can help - and how?

    Goals

    • Investigate how AI can help with different tasks
    • Check out different AI tools, which one is best for which job
    • Summarize learning

    Resources

    • Reading some blog posts by PMs that looked into it
    • Popular and less popular AI tools

    Work is done SUSE internally at https://confluence.suse.com/display/~a_jaeger/Hackweek+25+-+AI+for+a+PM and subpages.


    Use local/private LLM for semantic knowledge search by digitaltomm

    Description

    Use a local LLM, based on SUSE AI (ollama, openwebui) to power geeko search (public instance: https://geeko.port0.org/).

    Goals

    Build a SUSE internal instance of https://geeko.port0.org/ that can operate on internal resources, crawling confluence.suse.com, gitlab.suse.de, etc.

    Resources

    Repo: https://github.com/digitaltom/semantic-knowledge-search

    Public instance: https://geeko.port0.org/

    Results

    Internal instance:

    I have an internal test instance running which has indexed a couple of internal wiki pages from the SCC team. It's using the ollama (llama3.1:8b) backend of suse-ai.openplatform.suse.com to create embedding vectors for indexed resources and to create a chat response. The semantic search for documents is done with a vector search inside of sqlite, using sqlite-vec.

    image


    Save pytorch models in OCI registries by jguilhermevanz

    Description

    A prerequisite for running applications in a cloud environment is the presence of a container registry. Another common scenario is users performing machine learning workloads in such environments. However, these types of workloads require dedicated infrastructure to run properly. We can leverage these two facts to help users save resources by storing their machine learning models in OCI registries, similar to how we handle some WebAssembly modules. This approach will save users the resources typically required for a machine learning model repository for the applications they need to run.

    Goals

    Allow PyTorch users to save and load machine learning models in OCI registries.

    Resources


    FamilyTrip Planner: A Personalized Travel Planning Platform for Families by pherranz

    Description

    FamilyTrip Planner is an innovative travel planning application designed to optimize travel experiences for families with children. By integrating APIs for flights, accommodations, and local activities, the app generates complete itineraries tailored to each family’s unique interests and needs. Recommendations are based on customizable parameters such as destination, trip duration, children’s ages, and personal preferences. FamilyTrip Planner not only simplifies the travel planning process but also offers a comprehensive, personalized experience for families.

    Goals

    This project aims to: - Create a user-friendly platform that assists families in planning complete trips, from flight and accommodation options to recommended family-friendly activities. - Provide intelligent, personalized travel itineraries using artificial intelligence to enhance travel enjoyment and minimize time and cost. - Serve as an educational project for exploring Go programming and artificial intelligence, with the goal of building proficiency in both.

    Resources

    To develop FamilyTrip Planner, the project will leverage: - APIs such as Skyscanner, Google Places, and TripAdvisor to source real-time information on flights, accommodations, and activities. - Go programming language to manage data integration, API connections, and backend development. - Basic machine learning libraries to implement AI-driven itinerary suggestions tailored to family needs and preferences.


    Extending KubeVirtBMC's capability by adding Redfish support by zchang

    Description

    In Hack Week 23, we delivered a project called KubeBMC (renamed to KubeVirtBMC now), which brings the good old-fashioned IPMI ways to manage virtual machines running on KubeVirt-powered clusters. This opens the possibility of integrating existing bare-metal provisioning solutions like Tinkerbell with virtualized environments. We even received an inquiry about transferring the project to the KubeVirt organization. So, a proposal was filed, which was accepted by the KubeVirt community, and the project was renamed after that. We have many tasks on our to-do list. Some of them are administrative tasks; some are feature-related. One of the most requested features is Redfish support.

    Goals

    Extend the capability of KubeVirtBMC by adding Redfish support. Currently, the virtbmc component only exposes IPMI endpoints. We need to implement another simulator to expose Redfish endpoints, as we did with the IPMI module. We aim at a basic set of functionalities:

    • Power management
    • Boot device selection
    • Virtual media mount (this one is not so basic add-emoji )

    Resources


    ddflare: (Dynamic)DNS management via Cloudflare API in Kubernetes by fgiudici

    Description

    ddflare is a project started a couple of weeks ago to provide DDNS management using v4 Cloudflare APIs: Cloudflare offers management via APIs and access tokens, so it is possible to register a domain and implement a DynDNS client without any other external service but their API.

    Since ddflare allows to set any IP to any domain name, one could manage multiple A and ALIAS domain records. Wouldn't be cool to allow full DNS control from the project and integrate it with your Kubernetes cluster?

    Goals

    Main goals are:

    1. add containerized image for ddflare
    2. extend ddflare to be able to add and remove DNS records (and not just update existing ones)
    3. add documentation, covering also a sample pod deployment for Kubernetes
    4. write a ddflare Kubernetes operator to enable domain management via Kubernetes resources (using kubebuilder)

    Available tasks and improvements tracked on ddflare github.

    Resources

    • https://github.com/fgiudici/ddflare
    • https://developers.cloudflare.com/api/
    • https://book.kubebuilder.io


    kubectl clone: Seamlessly Clone Kubernetes Resources Across Multiple Rancher Clusters and Projects by dpunia

    Description

    kubectl clone is a kubectl plugin that empowers users to clone Kubernetes resources across multiple clusters and projects managed by Rancher. It simplifies the process of duplicating resources from one cluster to another or within different namespaces and projects, with optional on-the-fly modifications. This tool enhances multi-cluster resource management, making it invaluable for environments where Rancher orchestrates numerous Kubernetes clusters.

    Goals

    1. Seamless Multi-Cluster Cloning
      • Clone Kubernetes resources across clusters/projects with one command.
      • Simplifies management, reduces operational effort.

    Resources

    1. Rancher & Kubernetes Docs

      • Rancher API, Cluster Management, Kubernetes client libraries.
    2. Development Tools

      • Kubectl plugin docs, Go programming resources.

    Building and Installing the Plugin

    1. Set Environment Variables: Export the Rancher URL and API token:
    • export RANCHER_URL="https://rancher.example.com"
    • export RANCHER_TOKEN="token-xxxxx:xxxxxxxxxxxxxxxxxxxx"
    1. Build the Plugin: Compile the Go program:
    • go build -o kubectl-clone ./pkg/
    1. Install the Plugin: Move the executable to a directory in your PATH:
    • mv kubectl-clone /usr/local/bin/

    Ensure the file is executable:

    • chmod +x /usr/local/bin/kubectl-clone
    1. Verify the Plugin Installation: Test the plugin by running:
    • kubectl clone --help

    You should see the usage information for the kubectl-clone plugin.

    Usage Examples

    1. Clone a Deployment from One Cluster to Another:
    • kubectl clone --source-cluster c-abc123 --type deployment --name nginx-deployment --target-cluster c-def456 --new-name nginx-deployment-clone
    1. Clone a Service into Another Namespace and Modify Labels:


    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.


    Multi-pod, autoscalable Elixir application in Kubernetes using K8s resources by socon

    Description

    Elixir / Erlang use their own solutions to create clusters that work together. Kubernetes provide its own orchestration. Due to the nature of the BEAM, it looks a very promising technology for applications that run in Kubernetes and requite to be always on, specifically if they are created as web pages using Phoenix.

    Goals

    • Investigate and provide solutions that work in Phoenix LiveView using Kubernetes resources, so a multi-pod application can be used
    • Provide an end to end example that creates and deploy a container from source code.

    Resources

    https://github.com/dwyl/phoenix-liveview-counter-tutorial https://github.com/propedeutica/elixir-k8s-counter


    Save pytorch models in OCI registries by jguilhermevanz

    Description

    A prerequisite for running applications in a cloud environment is the presence of a container registry. Another common scenario is users performing machine learning workloads in such environments. However, these types of workloads require dedicated infrastructure to run properly. We can leverage these two facts to help users save resources by storing their machine learning models in OCI registries, similar to how we handle some WebAssembly modules. This approach will save users the resources typically required for a machine learning model repository for the applications they need to run.

    Goals

    Allow PyTorch users to save and load machine learning models in OCI registries.

    Resources


    Save pytorch models in OCI registries by jguilhermevanz

    Description

    A prerequisite for running applications in a cloud environment is the presence of a container registry. Another common scenario is users performing machine learning workloads in such environments. However, these types of workloads require dedicated infrastructure to run properly. We can leverage these two facts to help users save resources by storing their machine learning models in OCI registries, similar to how we handle some WebAssembly modules. This approach will save users the resources typically required for a machine learning model repository for the applications they need to run.

    Goals

    Allow PyTorch users to save and load machine learning models in OCI registries.

    Resources


    Make more sense of openQA test results using AI by livdywan

    Description

    AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.

    User Story

    Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?

    Goals

    • Leverage a chat interface to help Allison
    • Create a model from scratch based on data from openQA
    • Proof of concept for automated analysis of openQA test results

    Bonus

    • Use AI to suggest solutions to merge conflicts
      • This would need a merge conflict editor that can suggest solving the conflict
    • Use image recognition for needles

    Resources

    Timeline

    Day 1

    • Conversing with open-webui to teach me how to create a model based on openQA test results

    Day 2

    Highlights

    • I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
    • Convincing the chat interface to produce code specific to my use case required very explicit instructions.
    • Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
    • Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses

    Outcomes

    • Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
    • Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.