Starting from prometheus ( and grafana if needed), learn how to monitor kubernetes and docker and do some valid alert/graph etc.

https://docs.docker.com/config/thirdparty/prometheus/

Looking for hackers with the skills:

golang prometheus monitoring kubernetes docker grafana

This project is part of:

Hack Week 17

Activity

  • over 6 years ago: dmaiocchi added keyword "grafana" to this project.
  • over 6 years ago: dmaiocchi added keyword "golang" to this project.
  • over 6 years ago: dmaiocchi added keyword "prometheus" to this project.
  • over 6 years ago: dmaiocchi added keyword "monitoring" to this project.
  • over 6 years ago: dmaiocchi added keyword "kubernetes" to this project.
  • over 6 years ago: dmaiocchi added keyword "docker" to this project.
  • over 6 years ago: dmaiocchi started this project.
  • over 6 years ago: dmaiocchi originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    toptop - a top clone written in Go by dshah

    Description

    toptop is a clone of Linux's top CLI tool, but written in Go.

    Goals

    Learn more about Go (mainly bubbletea) and Linux

    Resources

    GitHub


    Install Uyuni on Kubernetes in cloud-native way by cbosdonnat

    Description

    For now installing Uyuni on Kubernetes requires running mgradm on a cluster node... which is not what users would do in the Kubernetes world. The idea is to implement an installation based only on helm charts and probably an operator.

    Goals

    Install Uyuni from Rancher UI.

    Resources


    file-organizer: A CLI Tool for Efficient File Management by okhatavkar

    Description

    Create a Go-based CLI tool that helps organize files in a specified folder by sorting them into subdirectories based on defined criteria, such as file type or creation date. Users will pass a folder path as an argument, and the tool will process and organize the files within it.

    Goals

    • Develop Go skills by building a practical command-line application.
    • Learn to manage and manipulate files and directories in Go using standard libraries.
    • Create a tool that simplifies file management, making it easier to organize and maintain directories.

    Resources

    • Go Standard Libraries: Utilize os, filepath, and time for file operations.
    • CLI Development: Use flag for basic argument parsing or consider cobra for enhanced functionality.
    • Go Learning Material: Go by Example and The Go Programming Language Documentation.

    Features

    • File Type Sorting: Automatically move files into subdirectories based on their extensions (e.g., documents, images, videos).
    • Date-Based Organization: Add an option to organize files by creation date into year/month folders.
    • User-Friendly CLI: Build intuitive commands and clear outputs for ease of use. This version maintains the core idea of organizing files efficiently while focusing on Go development and practical file management.


    terraform-provider-feilong by e_bischoff

    Project Description

    People need to test operating systems and applications on s390 platform.

    Installation from scratch solutions include:

    • just deploy and provision manually add-emoji (with the help of ftpboot script, if you are at SUSE)
    • use s3270 terminal emulation (used by openQA people?)
    • use LXC from IBM to start CP commands and analyze the results
    • use zPXE to do some PXE-alike booting (used by the orthos team?)
    • use tessia to install from scratch using autoyast
    • use libvirt for s390 to do some nested virtualization on some already deployed z/VM system
    • directly install a Linux kernel on a LPAR and use kvm + libvirt from there

    Deployment from image solutions include:

    • use ICIC web interface (openstack in disguise, contributed by IBM)
    • use ICIC from the openstack terraform provider (used by Rancher QA)
    • use zvm_ansible to control SMAPI
    • connect directly to SMAPI low-level socket interface

    IBM Cloud Infrastructure Center (ICIC) harnesses the Feilong API, but you can use Feilong without installing ICIC, provided you set up a "z/VM cloud connector" into one of your VMs following this schema.

    What about writing a terraform Feilong provider, just like we have the terraform libvirt provider? That would allow to transparently call Feilong from your main.tf files to deploy and destroy resources on your system/z.

    Other Feilong-based solutions include:

    • make libvirt Feilong-aware
    • simply call Feilong from shell scripts with curl
    • use zvmconnector client python library from Feilong
    • use zthin part of Feilong to directly command SMAPI.

    Goal for Hackweek 23

    My final goal is to be able to easily deploy and provision VMs automatically on a z/VM system, in a way that people might enjoy even outside of SUSE.

    My technical preference is to write a terraform provider plugin, as it is the approach that involves the least software components for our deployments, while remaining clean, and compatible with our existing development infrastructure.

    Goals for Hackweek 24

    Feilong provider works and is used internally by SUSE Manager team. Let's push it forward!

    Let's add support for fiberchannel disks and multipath.

    Goals for Hackweek 25

    • Finish support for fiberchannel disks and multipath
    • Fix problems with registration on hashicorp providers registry


    Learn enough Golang and hack on CoreDNS by jkuzilek

    Description

    I'm implementing a split-horizon DNS for my home Kubernetes cluster to be able to access my internal (and external) services over the local network through public domains. I managed to make a PoC with the k8s_gateway plugin for CoreDNS. However, I soon found out it responds with IPs for all Gateways assigned to HTTPRoutes, publishing public IPs as well as the internal Loadbalancer ones.

    To remedy this issue, a simple filtering mechanism has to be implemented.

    Goals

    • Learn an acceptable amount of Golang
    • Implement GatewayClass (and IngressClass) filtering for k8s_gateway
    • Deploy on homelab cluster
    • Profit?

    Resources

    EDIT: Feature mostly complete. An unfinished PR lies here. Successfully tested working on homelab cluster.


    Update my own python audio and video time-lapse and motion capture apps and publish by dmair

    Project Description

    Many years ago, in my own time, I wrote a Qt python application to periodically capture frames from a V4L2 video device (e.g. a webcam) and used it to create daily weather timelapse videos from windows at my home. I have maintained it at home in my own time and this year have added motion detection making it a functional video security tool but with no guarantees. I also wrote a linux audio monitoring app in python using Qt in my own time that captures live signal strength along with 24 hour history of audio signal level/range and audio spectrum. I recently added background noise filtering to the app. In due course I aim to include voice detection, currently I'm assuming via Google's public audio interface. Neither of these is a professional home security app but between them they permit a user to freely monitor video and audio data from a home in a manageable way. Both projects are on github but out-of-date with personal work, I would like to organize and update the github versions of these projects.

    Goal for this Hackweek

    It would probably help to migrate all the v4l2py module based video code to linuxpy.video based code and that looks like a re-write of large areas of the video code. It would also be good to remove a lot of python lint that is several years old to improve the projects with the main goal being to push the recent changes with better organized code to github. If there is enough time I'd like to take the in-line Qt QSettings persistent state code used per-app and write a python class that encapsulates the Qt QSettings class in a value_of(name)/name=value manner for shared use in projects so that persistent state can be accessed read or write anywhere within the apps using a simple interface.

    Resources

    I'm not specifically looking for help but welcome other input.


    Saline (state deployment control and monitoring tool for SUSE Manager/Uyuni) by vizhestkov

    Project Description

    Saline is an addition for salt used in SUSE Manager/Uyuni aimed to provide better control and visibility for states deploymend in the large scale environments.

    In current state the published version can be used only as a Prometheus exporter and missing some of the key features implemented in PoC (not published). Now it can provide metrics related to salt events and state apply process on the minions. But there is no control on this process implemented yet.

    Continue with implementation of the missing features and improve the existing implementation:

    • authentication (need to decide how it should be/or not related to salt auth)

    • web service providing the control of states deployment

    Goal for this Hackweek

    • Implement missing key features

    • Implement the tool for state deployment control with CLI

    Resources

    https://github.com/openSUSE/saline


    Multi-pod, autoscalable Elixir application in Kubernetes using K8s resources by socon

    Description

    Elixir / Erlang use their own solutions to create clusters that work together. Kubernetes provide its own orchestration. Due to the nature of the BEAM, it looks a very promising technology for applications that run in Kubernetes and requite to be always on, specifically if they are created as web pages using Phoenix.

    Goals

    • Investigate and provide solutions that work in Phoenix LiveView using Kubernetes resources, so a multi-pod application can be used
    • Provide an end to end example that creates and deploy a container from source code.

    Resources

    https://github.com/dwyl/phoenix-liveview-counter-tutorial https://github.com/propedeutica/elixir-k8s-counter


    Introducing "Bottles": A Proof of Concept for Multi-Version CRD Management in Kubernetes by aruiz

    Description

    As we delve deeper into the complexities of managing multiple CRD versions within a single Kubernetes cluster, I want to introduce "Bottles" - a proof of concept that aims to address these challenges.

    Bottles propose a novel approach to isolating and deploying different CRD versions in a self-contained environment. This would allow for greater flexibility and efficiency in managing diverse workloads.

    Goals

    • Evaluate Feasibility: determine if this approach is technically viable, as well as identifying possible obstacles and limitations.
    • Reuse existing technology: leverage existing products whenever possible, e.g. build on top of Kubewarden as admission controller.
    • Focus on Rancher's use case: the ultimate goal is to be able to use this approach to solve Rancher users' needs.

    Resources

    Core concepts:

    • ConfigMaps: Bottles could be defined and configured using ConfigMaps.
    • Admission Controller: An admission controller will detect "bootled" CRDs being installed and replace the resource name used to store them.
    • Aggregated API Server: By analyzing the author of a request, the aggregated API server will determine the correct bottle and route the request accordingly, making it transparent for the user.


    Mammuthus - The NFS-Ganesha inside Kubernetes controller by vcheng

    Description

    As the user-space NFS provider, the NFS-Ganesha is wieldy use with serval projects. e.g. Longhorn/Rook. We want to create the Kubernetes Controller to make configuring NFS-Ganesha easy. This controller will let users configure NFS-Ganesha through different backends like VFS/CephFS.

    Goals

    1. Create NFS-Ganesha Package on OBS: nfs-ganesha5, nfs-ganesha6
    2. Create NFS-Ganesha Container Image on OBS: Image
    3. Create a Kubernetes controller for NFS-Ganesha and support the VFS configuration on demand. Mammuthus

    Resources

    NFS-Ganesha


    Install Uyuni on Kubernetes in cloud-native way by cbosdonnat

    Description

    For now installing Uyuni on Kubernetes requires running mgradm on a cluster node... which is not what users would do in the Kubernetes world. The idea is to implement an installation based only on helm charts and probably an operator.

    Goals

    Install Uyuni from Rancher UI.

    Resources


    Small healthcheck tool for Longhorn by mbrookhuis

    Project Description

    We have often problems (e.g. pods not starting) that are related to PVCs not running, cluster (nodes) not all up or deployments not running or completely running. This all prevents administration activities. Having something that can regular be run to validate the status of the cluster would be helpful, and not as of today do a lot of manual tasks.

    As addition (read enough time), we could add changing reservation, adding new disks, etc. --> This didn't made it. But the scripts can easily be adopted.

    This tool would decrease troubleshooting time, giving admins rights to the rancher GUI and could be used in automation.

    Goal for this Hackweek

    At the end we should have a small python tool that is doing a (very) basic health check on nodes, deployments and PVCs. First attempt was to make it in golang, but that was taking to much time.

    Overview

    This tool will run a simple healthcheck on a kubernetes cluster. It will perform the following actions:

    • node check: This will check all nodes, and display the status and the k3s version. If the status of the nodes is not "Ready" (this should be only reported), the cluster will be reported as having problems

    • deployment check: This check will list all deployments, and display the number of expected replicas and the used replica. If there are unused replicas this will be displayed. The cluster will be reported as having problems.

    • pvc check: This check will list of all pvc's, and display the status and the robustness. If the robustness is not "Healthy", the cluster will be reported as having problems.

    If there is a problem registered in the checks, there will be a warning that the cluster is not healthy and the program will exit with 1.

    The script has 1 mandatory parameter and that is the kubeconf of the cluster or of a node off the cluster.

    The code is writen for Python 3.11, but will also work on 3.6 (the default with SLES15.x). There is a venv present that will contain all needed packages. Also, the script can be run on the cluster itself or any other linux server.

    Installation

    To install this project, perform the following steps:

    • Create the directory /opt/k8s-check

    mkdir /opt/k8s-check

    • Copy all the file to this directory and make the following changes:

    chmod +x k8s-check.py


    Migrate from Docker to Podman by tjyrinki_suse

    Description

    I'd like to continue my former work on containerization of several domains on a single server by changing from Docker containers to Podman containers. That will need an OS upgrade as well as Podman is not available in that old server version.

    Goals

    • Update OS.
    • Migrate from Docker to Podman.
    • Keep everything functional, including the existing "meanwhile done" additional Docker container that is actually being used already.
    • Keep everything at least as secure as currently. One of the reasons of having the containers is to isolate risks related to services open to public Internet.
    • Try to enable the Podman use in production.
    • At minimum, learn about all of these topics.
    • Optionally, improve Ansible side of things as well...

    Resources

    A search engine is one's friend. Migrating from Docker to Podman, and from docker-compose to podman-compose.