There are customer use cases where sharing information via internet or uploading data somewhere is not acceptable for security reasons: this avoid the usage of some tool like the most famous Google Analytics, and prevent developers from understanding how the web application is used by the customers. I don't want to reinvent the wheel and re-implement a copy of Google Analytics, but getting inspired from it, the goal is to reuse information that we already have to extrapolate an analysis of the WebApp customer usage.

I started this project with the aim of learning a programming language where I am not so comfortable yet (python). The purpose of this Hack Week project is to bring this basic tool at a minimal stable and usable state with the purpose of analyze the usage of a WebApp in scenarios where the WebApp is used in an internal network only (offline, disconnected from the internet).

Starting from the current status of the tool at this commit, I'd like to improve it more:

  • fix the patterns finder [DONE]
    • data in UI are badly presented and grouped - [DONE]
    • the algorithm generates a pair of from-to URLs pattern ignoring they comes from a different ip/user, and the data results reflects a non-real pattern actually. This needs to be fixed. [DONE]
  • add filters for the patterns section [DONE]
  • let the table columns to be ordered
  • go through the python backend algorithms and improve [DONE]
  • provide a feature to compare and diff from a given list of URLs (a struts-config.xml for instance) which are the most used and which are never hit [DONE]

Long run roadmap:

  • let the engine keep the history of what has already been read and what not (by date and time? by log file?)
  • provide a simple optional javascript to send an AJAX request with some information (user, date and time, URL, etc) to a configured endpoint
    • this could replace the logic of reading and parsing tomcat logs
    • store this information in the database
    • run the python code against the database instead of tomcat log files

Looking for hackers with the skills:

log python tomcat analyzer analysis statistics web yarn reactjs

This project is part of:

Hack Week 17

Activity

  • over 7 years ago: dleidi started this project.
  • over 7 years ago: LuNeves liked this project.
  • over 7 years ago: dmaiocchi liked this project.
  • over 7 years ago: dleidi added keyword "log" to this project.
  • over 7 years ago: dleidi added keyword "python" to this project.
  • over 7 years ago: dleidi added keyword "tomcat" to this project.
  • over 7 years ago: dleidi added keyword "analyzer" to this project.
  • over 7 years ago: dleidi added keyword "analysis" to this project.
  • over 7 years ago: dleidi added keyword "statistics" to this project.
  • over 7 years ago: dleidi added keyword "web" to this project.
  • over 7 years ago: dleidi added keyword "yarn" to this project.
  • over 7 years ago: dleidi added keyword "reactjs" to this project.
  • over 7 years ago: dleidi originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    openQA log viewer by mpagot

    Description

    *** Warning: Are You at Risk for VOMIT? ***

    Do you find yourself staring at a screen, your eyes glossing over as thousands of lines of text scroll by? Do you feel a wave of text-based nausea when someone asks you to "just check the logs"?

    You may be suffering from VOMIT (Verbose Output Mental Irritation Toxicity).

    This dangerous, work-induced ailment is triggered by exposure to an overwhelming quantity of log data, especially from parallel systems. The human brain, not designed to mentally process 12 simultaneous autoinst-log.txt files, enters a state of toxic shock. It rejects the "Verbose Output," making it impossible to find the one critical error line buried in a 50,000-line sea of "INFO: doing a thing."

    Before you're forced to rm -rf /var/log in a fit of desperation, we present the digital antacid.

    No panic: we have The openQA Log Visualizer

    This is the UI antidote for handling toxic log environments. It bravely dives into the chaotic, multi-machine mess of your openQA test runs, finds all the related, verbose logs, and force-feeds them into a parser.

    image

    Goals

    Work on the existing POC openqa-log-visualizer about few specific tasks:

    • add support for more type of logs
    • extend the configuration file syntax beyond the actual one
    • work on log parsing performance

    Find some beta-tester and collect feedback and ideas about features

    If time allow for it evaluate other UI frameworks and solutions (something more simple to distribute and run, maybe more low level to gain in performance).

    Resources

    openqa-log-visualizer


    Improve chore and screen time doc generator script `wochenplaner` by gniebler

    Description

    I wrote a little Python script to generate PDF docs, which can be used to track daily chore completion and screen time usage for several people, with one page per person/week.

    I named this script wochenplaner and have been using it for a few months now.

    It needs some improvements and adjustments in how the screen time should be tracked and how chores are displayed.

    Goals

    • Fix chore field separation lines
    • Change screen time tracking logic from "global" (week-long) to daily subtraction and weekly addition of remainders (more intuitive than current "weekly time budget method)
    • Add logic to fill in chore fields/lines, ideally with pictures, falling back to text.

    Resources

    tbd (Gitlab repo)


    Improvements to osc (especially with regards to the Git workflow) by mcepl

    Description

    There is plenty of hacking on osc, where we could spent some fun time. I would like to see a solution for https://github.com/openSUSE/osc/issues/2006 (which is sufficiently non-serious, that it could be part of HackWeek project).


    Bring to Cockpit + System Roles capabilities from YAST by miguelpc

    Bring to Cockpit + System Roles features from YAST

    Cockpit and System Roles have been added to SLES 16 There are several capabilities in YAST that are not yet present in Cockpit and System Roles We will follow the principle of "automate first, UI later" being System Roles the automation component and Cockpit the UI one.

    Goals

    The idea is to implement service configuration in System Roles and then add an UI to manage these in Cockpit. For some capabilities it will be required to have an specific Cockpit Module as they will interact with a reasource already configured.

    Resources

    A plan on capabilities missing and suggested implementation is available here: https://docs.google.com/spreadsheets/d/1ZhX-Ip9MKJNeKSYV3bSZG4Qc5giuY7XSV0U61Ecu9lo/edit

    Linux System Roles:

    First meeting Hackweek catchup


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt (including bootstrapping with bootstrap script) and Salt-ssh clients

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    In progress/done for Hack Week 25

    Guide

    We started writin a Guide: Adding a new client GNU Linux distribution to Uyuni at https://github.com/uyuni-project/uyuni/wiki/Guide:-Adding-a-new-client-GNU-Linux-distribution-to-Uyuni, to make things easier for everyone, specially those not too familiar wht Uyuni or not technical.

    openSUSE Leap 16.0

    The distribution will all love!

    https://en.opensuse.org/openSUSE:Roadmap#DRAFTScheduleforLeap16.0

    Curent Status We started last year, it's complete now for Hack Week 25! :-D

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file) NOTE: Done, client tools for SLMicro6 are using as those for SLE16.0/openSUSE Leap 16.0 are not available yet
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [W] Package management (install, remove, update...). Works, even reboot requirement detection


    Update M2Crypto by mcepl

    There are couple of projects I work on, which need my attention and putting them to shape:

    Goal for this Hackweek

    • Put M2Crypto into better shape (most issues closed, all pull requests processed)
    • More fun to learn jujutsu
    • Play more with Gemini, how much it help (or not).
    • Perhaps, also (just slightly related), help to fix vis to work with LuaJIT, particularly to make vis-lspc working.


    Is SUSE Trending? Popularity and Developer Sentiment Insight Using Native AI Capabilities by terezacerna

    Description

    This project aims to explore the popularity and developer sentiment around SUSE and its technologies compared to Red Hat and their technologies. Using publicly available data sources, I will analyze search trends, developer preferences, repository activity, and media presence. The final outcome will be an interactive Power BI dashboard that provides insights into how SUSE is perceived and discussed across the web and among developers.

    Goals

    1. Assess the popularity of SUSE products and brand compared to Red Hat using Google Trends.
    2. Analyze developer satisfaction and usage trends from the Stack Overflow Developer Survey.
    3. Use the GitHub API to compare SUSE and Red Hat repositories in terms of stars, forks, contributors, and issue activity.
    4. Perform sentiment analysis on GitHub issue comments to measure community tone and engagement using built-in Copilot capabilities.
    5. Perform sentiment analysis on Reddit comments related to SUSE technologies using built-in Copilot capabilities.
    6. Use Gnews.io to track and compare the volume of news articles mentioning SUSE and Red Hat technologies.
    7. Test the integration of Copilot (AI) within Power BI for enhanced data analysis and visualization.
    8. Deliver a comprehensive Power BI report summarizing findings and insights.
    9. Test the full potential of Power BI, including its AI features and native language Q&A.

    Resources

    1. Google Trends: Web scraping for search popularity data
    2. Stack Overflow Developer Survey: For technology popularity and satisfaction comparison
    3. GitHub API: For repository data (stars, forks, contributors, issues, comments).
    4. Gnews.io API: For article volume and mentions analysis.
    5. Reddit: SUSE related topics with comments.