Currently externaltools is deployed manually with RPM. This is a manual process and involves packaging gem dependencies.
We do have a caasp cluster running internally which already hosts geekos.scc.suse.de and dash.scc.suse.de.
It would simplify development on externaltools a lot if we could switch it to be automatically deployed in CaaSP.
Links:
https://externaltools.suse.de/
https://gitlab.suse.de/OPS-Service/externaltools/
Example gitlab CI pipeline with caasp deployment (.gitlab-ci.yml, geekos-frontend.yml)
Looking for hackers with the skills:
This project is part of:
Hack Week 17
Activity
Comments
-
over 6 years ago by okurz | Reply
Hm, sounds interesting. I wonder in general, how does this simplify deployment? Isn't an automatic update of RPM very easy or what is the current approach used?
-
over 6 years ago by cschum | Reply
RPMs are not a natural way to package Rails applications. Containers work better there. And with Kubernetes you also get the necessary configuration of the infrastructure around the application.
Even simpler would be to use a PaaS system. But as an exercise to learn how to do it with Kubernetes this is an interesting project.
-
-
over 6 years ago by kiall | Reply
Re the .gitlab-ci.yml you gave - you could also use the new GitLab Kubernetes integration with CaaSP. This can do some cool stuff, like review apps (Deploy a full instance of the stack for each PR, destroying it again when closed or merged)... Check the products "Operations -> Kubernetes" section at the side to add connection details for your cluster.
Similar Projects
Recipes catalog and calculator in Rails 8 by gfilippetti
My wife needs a website to catalog and sell the products of her upcoming bakery, and I need to learn and practice modern Rails. So I'm using this Hack Week to build a modern store using the latest Ruby on Rails best practices, ideally up to the deployment.
TO DO
- Index page
- Product page
- Admin area -- Supplies calculator based on orders -- Orders notification
- Authentication
- Payment
- Deployment
Day 1
As my Rails knowledge was pretty outdated and I had 0 experience with Turbo (wich I want to use in the app), I started following a turbo-rails course. I completed 5 of 11 chapters.
Day 2
Continued the course until chapter 8 and added live updates & an empty state to the app. I should finish the course on day 3 and start my own project with the knowledge from it.
Hackweek 24
For this Hackweek I'll continue this project, focusing on a Catalog/Calculator for my wife's recipes so she can use for her Café.
Day 1
Use local/private LLM for semantic knowledge search by digitaltomm
Description
Use a local LLM, based on SUSE AI (ollama, openwebui) to power geeko search (public instance: https://geeko.port0.org/).
Goals
Build a SUSE internal instance of https://geeko.port0.org/ that can operate on internal resources, crawling confluence.suse.com, gitlab.suse.de, etc.
Resources
Repo: https://github.com/digitaltom/semantic-knowledge-search
Public instance: https://geeko.port0.org/
Results
Internal instance:
I have an internal test instance running which has indexed a couple of internal wiki pages from the SCC team. It's using the ollama (llama3.1:8b
) backend of suse-ai.openplatform.suse.com to create embedding vectors for indexed resources and to create a chat response. The semantic search for documents is done with a vector search inside of sqlite, using sqlite-vec.
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
Rancher/k8s Trouble-Maker by tonyhansen
Project Description
When studying for my RHCSA, I found trouble-maker, which is a program that breaks a Linux OS and requires you to fix it. I want to create something similar for Rancher/k8s that can allow for troubleshooting an unknown environment.
Goal for this Hackweek
Create a basic framework for creating Rancher/k8s cluster lab environments as needed for the Break/Fix Create at least 5 modules that can be applied to the cluster and require troubleshooting
Resources
https://github.com/rancher/terraform-provider-rancher2 https://github.com/rancher/tf-rancher-up
Multi-pod, autoscalable Elixir application in Kubernetes using K8s resources by socon
Description
Elixir / Erlang use their own solutions to create clusters that work together. Kubernetes provide its own orchestration. Due to the nature of the BEAM, it looks a very promising technology for applications that run in Kubernetes and requite to be always on, specifically if they are created as web pages using Phoenix.
Goals
- Investigate and provide solutions that work in Phoenix LiveView using Kubernetes resources, so a multi-pod application can be used
- Provide an end to end example that creates and deploy a container from source code.
Resources
https://github.com/dwyl/phoenix-liveview-counter-tutorial https://github.com/propedeutica/elixir-k8s-counter
Technical talks at universities by agamez
Description
This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.
For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.
Goals
- Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
- Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
- Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.
Resources
- Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
- SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.
Introducing "Bottles": A Proof of Concept for Multi-Version CRD Management in Kubernetes by aruiz
Description
As we delve deeper into the complexities of managing multiple CRD versions within a single Kubernetes cluster, I want to introduce "Bottles" - a proof of concept that aims to address these challenges.
Bottles propose a novel approach to isolating and deploying different CRD versions in a self-contained environment. This would allow for greater flexibility and efficiency in managing diverse workloads.
Goals
- Evaluate Feasibility: determine if this approach is technically viable, as well as identifying possible obstacles and limitations.
- Reuse existing technology: leverage existing products whenever possible, e.g. build on top of Kubewarden as admission controller.
- Focus on Rancher's use case: the ultimate goal is to be able to use this approach to solve Rancher users' needs.
Resources
Core concepts:
- ConfigMaps: Bottles could be defined and configured using ConfigMaps.
- Admission Controller: An admission controller will detect "bootled" CRDs being installed and replace the resource name used to store them.
- Aggregated API Server: By analyzing the author of a request, the aggregated API server will determine the correct bottle and route the request accordingly, making it transparent for the user.