Yast team has a great experience in automating tasks that can be done by machines in order to save time that can be used better. We usually use Jenkins for running these jobs.
Why to use automation?
- It's error-prone
- It runs 24 hours a day, even on weekends
- It's much faster than humans
- It can do all the boring stuff and never complains
Examples of automation
- Open pull-requests reminder https://github.com/jreidinger/pullrequestsreminder @Jenkins
- Auto-testing and auto submission to OBS/IBS for all now code via Packaging Tasks, e.g., @Jenkins
Ideas what can be automated further
- Bugzilla is now able to set several NEEDINFO flags, one can be lost is so many e-mails and this simple tool would daily check for NEEDINFO pending (per user, per team, ...)
- Even better are e-mails from FATE - this tool should, again, check for NEEDINFO flags and report them to you
- Automatic generator of translations and auto-submitter to openSUSE
- Any more ideas are welcome!
This project is part of:
Hack Week 11
Activity
Comments
Similar Projects
Bring to Cockpit + System Roles capabilities from YAST by miguelpc
Bring to Cockpit + System Roles features from YAST
Cockpit and System Roles have been added to SLES 16 There are several capabilities in YAST that are not yet present in Cockpit and System Roles We will follow the principle of "automate first, UI later" being System Roles the automation component and Cockpit the UI one.
Goals
The idea is to implement service configuration in System Roles and then add an UI to manage these in Cockpit. For some capabilities it will be required to have an specific Cockpit Module as they will interact with a reasource already configured.
Resources
A plan on capabilities missing and suggested implementation is available here: https://docs.google.com/spreadsheets/d/1ZhX-Ip9MKJNeKSYV3bSZG4Qc5giuY7XSV0U61Ecu9lo/edit
Linux System Roles: https://linux-system-roles.github.io/
RMT.rs: High-Performance Registration Path for RMT using Rust by gbasso
Description
The SUSE Repository Mirroring Tool (RMT) is a critical component for managing software updates and subscriptions, especially for our Public Cloud Team (PCT). In a cloud environment, hundreds or even thousands of new SUSE instances (VPS/EC2) can be provisioned simultaneously. Each new instance attempts to register against an RMT server, creating a "thundering herd" scenario.
We have observed that the current RMT server, written in Ruby, faces performance issues under this high-concurrency registration load. This can lead to request overhead, slow registration times, and outright registration failures, delaying the readiness of new cloud instances.
This Hackweek project aims to explore a solution by re-implementing the performance-critical registration path in Rust. The goal is to leverage Rust's high performance, memory safety, and first-class concurrency handling to create an alternative registration endpoint that is fast, reliable, and can gracefully manage massive, simultaneous request spikes.
The new Rust module will be integrated into the existing RMT Ruby application, allowing us to directly compare the performance of both implementations.
Goals
The primary objective is to build and benchmark a high-performance Rust-based alternative for the RMT server registration endpoint.
Key goals for the week:
- Analyze & Identify: Dive into the
SUSE/rmtRuby codebase to identify and map out the exact critical path for server registration (e.g., controllers, services, database interactions). - Develop in Rust: Implement a functionally equivalent version of this registration logic in Rust.
- Integrate: Explore and implement a method for Ruby/Rust integration to "hot-wire" the new Rust module into the RMT application. This may involve using FFI, or libraries like
rb-sysormagnus. - Benchmark: Create a benchmarking script (e.g., using
k6,ab, or a custom tool) that simulates the high-concurrency registration load from thousands of clients. - Compare & Present: Conduct a comparative performance analysis (requests per second, latency, success/error rates, CPU/memory usage) between the original Ruby path and the new Rust path. The deliverable will be this data and a summary of the findings.
Resources
- RMT Source Code (Ruby):
https://github.com/SUSE/rmt
- RMT Documentation:
https://documentation.suse.com/sles/15-SP7/html/SLES-all/book-rmt.html
- Tooling & Stacks:
- RMT/Ruby development environment (for running the base RMT)
- Rust development environment (
rustup,cargo)
- Potential Integration Libraries:
- rb-sys:
https://github.com/oxidize-rb/rb-sys - Magnus:
https://github.com/matsadler/magnus
- rb-sys:
- Benchmarking Tools:
k6(https://k6.io/)ab(ApacheBench)
Recipes catalog and calculator in Rails 8 by gfilippetti
My wife needs a website to catalog and sell the products of her upcoming bakery, and I need to learn and practice modern Rails. So I'm using this Hack Week to build a modern store using the latest Ruby on Rails best practices, ideally up to the deployment.
TO DO
- Index page
- Product page
- Admin area -- Supplies calculator based on orders -- Orders notification
- Authentication
- Payment
- Deployment
Day 1
As my Rails knowledge was pretty outdated and I had 0 experience with Turbo (wich I want to use in the app), I started following a turbo-rails course. I completed 5 of 11 chapters.
Day 2
Continued the course until chapter 8 and added live updates & an empty state to the app. I should finish the course on day 3 and start my own project with the knowledge from it.
Hackweek 24
For this Hackweek I'll continue this project, focusing on a Catalog/Calculator for my wife's recipes so she can use for her Café.
Day 1
OS self documentation, health check and troubleshooting by roseswe
Project Description
The aim of this hackweek project is to improve the utility "cfg2html" so that it is even more usable under SLES and perhaps also under Rancher.
cfg2html (see also https://github.com/cfg2html/cfg2html) itself is a very mature utility for collecting and documenting information of an operating system like Linux, AIX, HP-UX and others.
Goal for this Hackweek
The aim is to extend cfg2html
- for SLES and SLES-for-SAP apps, high availability
- Improve code for MicroOS 5.x, SUMA, Edge and k8s environments
- fix shellbeauity warnings
- possibly add more plugins
- SUMA/Salt integration to collect.
Resources
Required skills: Bash, shell script and the SUSE products mentioned.
https://github.com/cfg2html/cfg2html
https://www.cfg2html.com/
SUSE Health Check Tools by roseswe
SUSE HC Tools Overview
A collection of tools written in Bash or Go 1.24++ to make life easier with handling of a bunch of tar.xz balls created by supportconfig.
Background: For SUSE HC we receive a bunch of supportconfig tar balls to check them for misconfiguration, areas for improvement or future changes.
Main focus on these HC are High Availability (pacemaker), SLES itself and SAP workloads, esp. around the SUSE best practices.
Goals
- Overall improvement of the tools
- Adding new collectors
- Add support for SLES16
Resources
csv2xls* example.sh go.mod listprodids.txt sumtext* trails.go README.md csv2xls.go exceltest.go go.sum m.sh* sumtext.go vercheck.py* config.ini csvfiles/ getrpm* listprodids* rpmdate.sh* sumxls* verdriver* credtest.go example.py getrpm.go listprodids.go sccfixer.sh* sumxls.go verdriver.go
docollall.sh* extracthtml.go gethostnamectl* go.sum numastat.go cpuvul* extractcluster.go firmwarebug* gethostnamectl.go m.sh* numastattest.go cpuvul.go extracthtml* firmwarebug.go go.mod numastat* xtr_cib.sh*
$ getrpm -r pacemaker
>> Product ID: 2795 (SUSE Linux Enterprise Server for SAP Applications 15 SP7 x86_64), RPM Name:
+--------------+----------------------------+--------+--------------+--------------------+
| Package Name | Version | Arch | Release | Repository |
+--------------+----------------------------+--------+--------------+--------------------+
| pacemaker | 2.1.10+20250718.fdf796ebc8 | x86_64 | 150700.3.3.1 | sle-ha/15.7/x86_64 |
| pacemaker | 2.1.9+20250410.471584e6a2 | x86_64 | 150700.1.9 | sle-ha/15.7/x86_64 |
+--------------+----------------------------+--------+--------------+--------------------+
Total packages found: 2
Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil
Join the Gitter channel! https://gitter.im/uyuni-project/hackweek
Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!
Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.
For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.
No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)
The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.
To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):
- Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
- Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
- Package management (install, remove, update...)
- Patching
- Applying any basic salt state (including a formula)
- Salt remote commands
- Bonus point: Java part for product identification, and monitoring enablement
- Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
- Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
- Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)
If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)
- If you don't have knowledge about some of the steps: ask the team
- If you still don't know what to do: switch to another distribution and keep testing.
This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)
Pending
In progress
FUSS
FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.
https://fuss.bz.it/
Seems to be a Debian 12 derivative, so adding it could be quite easy.
[W]Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)[W]Onboarding (salt minion from UI, salt minion from bootstrap script, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator) --> Working for all 3 options (salt minion UI, salt minion bootstrap script and salt-ssh minion from the UI).[W]Package management (install, remove, update...) --> Installing a new package works, needs to test the rest.[I]Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already). No patches detected. Do we support patches for Debian at all?[W]Applying any basic salt state (including a formula)
Gemini-Powered Socratic Bug Evaluation and Management Assistant by rtsvetkov
Description
To build a tool or system that takes a raw bug report (including error messages and context) and uses a large language model (LLM) to generate a series of structured, Socratic-style questions designed to guide a the integration and development toward the root cause, rather than just providing a direct, potentially incorrect fix.
Goals
Set up a Python environment
Set the environment and get a Gemini API key. 2. Collect 5-10 realistic bug reports (from open-source projects, personal projects, or public forums like Stack Overflow—include the error message and the initial context).
Build the Dialogue Loop
- Write a basic Python script using the Gemini API.
- Implement a simple conversational loop: User Input (Bug) -> AI Output (Question) -> User Input (Answer to AI's question) -> AI Output (Next Question). Code Implementation
Socratic Strategy Implementation
- Refine the logic to ensure the questions follow a Socratic path (e.g., from symptom-> context -> assumptions -> root cause).
- Implement Function Calling (an advanced feature of the Gemini API) to suggest specific actions to the user, like "Run a ping test" or "Check the database logs."
Resources
Bugzilla goes AI - Phase 1 by nwalter
Description
This project, Bugzilla goes AI, aims to boost developer productivity by creating an autonomous AI bug agent during Hackweek. The primary goal is to reduce the time employees spend triaging bugs by integrating Ollama to summarize issues, recommend next steps, and push focused daily reports to a Web Interface.
Goals
To reduce employee time spent on Bugzilla by implementing an AI tool that triages and summarizes bug reports, providing actionable recommendations to the team via Web Interface.
Project Charter
https://docs.google.com/document/d/1HbAvgrg8T3pd1FIx74nEfCObCljpO77zz5In_Jpw4as/edit?usp=sharing## Description