Project Description

Implementing an Updatecli Kubernetes operator.

Updatecli is a tool to automate various type of dependencies in a GitOps approach where git repositories are the source of truth.

Goal for this Hackweek

By implementing a basic Kubernetes operator, I am planning to see how much useful Updatecli could be, to automate various resources update.

Resources

  • https://github.com/updatecli/updatecli
  • www.updatecli.io

Looking for hackers with the skills:

golang kubernetes

This project is part of:

Hack Week 21

Activity

  • over 3 years ago: archanaserver started this project.
  • over 3 years ago: olblak added keyword "kubernetes" to this project.
  • over 3 years ago: olblak added keyword "golang" to this project.
  • over 3 years ago: olblak originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Create a Cloud-Native policy engine with notifying capabilities to optimize resource usage by gbazzotti

    Description

    The goal of this project is to begin the initial phase of development of an all-in-one Cloud-Native Policy Engine that notifies resource owners when their resources infringe predetermined policies. This was inspired by a current issue in the CES-SRE Team where other solutions seemed to not exactly correspond to the needs of the specific workloads running on the Public Cloud Team space.

    The initial architecture can be checked out on the Repository listed under Resources.

    Among the features that will differ this project from other monitoring/notification systems:

    • Pre-defined sensible policies written at the software-level, avoiding a learning curve by requiring users to write their own policies
    • All-in-one functionality: logging, mailing and all other actions are not required to install any additional plugins/packages
    • Easy account management, being able to parse all required configuration by a single JSON file
    • Eliminate integrations by not requiring metrics to go through a data-agreggator

    Goals

    • Create a minimal working prototype following the workflow specified on the documentation
    • Provide instructions on installation/usage
    • Work on email notifying capabilities

    Resources


    Create a go module to wrap happy-compta.fr by cbosdonnat

    Description

    https://happy-compta.fr is a tool for french work councils simple book keeping. While it does the job, it has no API to work with and it is tedious to enter loads of operations.

    Goals

    Write a go client module to be used as an API to programmatically manipulate the tool.

    Writing an example tool to load data from a CSV file would be good too.


    Contribute to terraform-provider-libvirt by pinvernizzi

    Description

    The SUSE Manager (SUMA) teams' main tool for infrastructure automation, Sumaform, largely relies on terraform-provider-libvirt. That provider is also widely used by other teams, both inside and outside SUSE.

    It would be good to help the maintainers of this project and give back to the community around it, after all the amazing work that has been already done.

    If you're interested in any of infrastructure automation, Terraform, virtualization, tooling development, Go (...) it is also a good chance to learn a bit about them all by putting your hands on an interesting, real-use-case and complex project.

    Goals

    • Get more familiar with Terraform provider development and libvirt bindings in Go
    • Solve some issues and/or implement some features
    • Get in touch with the community around the project

    Resources


    SUSE Health Check Tools by roseswe

    SUSE HC Tools Overview

    A collection of tools written in Bash or Go 1.24++ to make life easier with handling of a bunch of tar.xz balls created by supportconfig.

    Background: For SUSE HC we receive a bunch of supportconfig tar balls to check them for misconfiguration, areas for improvement or future changes.

    Main focus on these HC are High Availability (pacemaker), SLES itself and SAP workloads, esp. around the SUSE best practices.

    Goals

    • Overall improvement of the tools
    • Adding new collectors
    • Add support for SLES16

    Resources

    csv2xls* example.sh go.mod listprodids.txt sumtext* trails.go README.md csv2xls.go exceltest.go go.sum m.sh* sumtext.go vercheck.py* config.ini csvfiles/ getrpm* listprodids* rpmdate.sh* sumxls* verdriver* credtest.go example.py getrpm.go listprodids.go sccfixer.sh* sumxls.go verdriver.go

    docollall.sh* extracthtml.go gethostnamectl* go.sum numastat.go cpuvul* extractcluster.go firmwarebug* gethostnamectl.go m.sh* numastattest.go cpuvul.go extracthtml* firmwarebug.go go.mod numastat* xtr_cib.sh*

    $ getrpm -r pacemaker >> Product ID: 2795 (SUSE Linux Enterprise Server for SAP Applications 15 SP7 x86_64), RPM Name: +--------------+----------------------------+--------+--------------+--------------------+ | Package Name | Version | Arch | Release | Repository | +--------------+----------------------------+--------+--------------+--------------------+ | pacemaker | 2.1.10+20250718.fdf796ebc8 | x86_64 | 150700.3.3.1 | sle-ha/15.7/x86_64 | | pacemaker | 2.1.9+20250410.471584e6a2 | x86_64 | 150700.1.9 | sle-ha/15.7/x86_64 | +--------------+----------------------------+--------+--------------+--------------------+ Total packages found: 2


    go-git: unlocking SHA256-based repository cloning ahead of git v3 by pgomes

    Description

    The go-git library implements the git internals in pure Go, so that any Go application can handle not only Git repositories, but also lower-level primitives (e.g. packfiles, idxfiles, etc) without needing to shell out to the git binary.

    The focus for this Hackweek is to fast track key improvements for the project ahead of the upstream release of Git V3, which may take place at some point next year.

    Goals

    Stretch goals

    Resources

    • https://github.com/go-git/go-git/
    • https://go-git.github.io/docs/


    Rancher/k8s Trouble-Maker by tonyhansen

    Project Description

    When studying for my RHCSA, I found trouble-maker, which is a program that breaks a Linux OS and requires you to fix it. I want to create something similar for Rancher/k8s that can allow for troubleshooting an unknown environment.

    Goals for Hackweek 25

    • Update to modern Rancher and verify that existing tests still work
    • Change testing logic to populate secrets instead of requiring a secondary script
    • Add new tests

    Goals for Hackweek 24 (Complete)

    • Create a basic framework for creating Rancher/k8s cluster lab environments as needed for the Break/Fix
    • Create at least 5 modules that can be applied to the cluster and require troubleshooting

    Resources

    • https://github.com/celidon/rancher-troublemaker
    • https://github.com/rancher/terraform-provider-rancher2
    • https://github.com/rancher/tf-rancher-up
    • https://github.com/rancher/quickstart


    Preparing KubeVirtBMC for project transfer to the KubeVirt organization by zchang

    Description

    KubeVirtBMC is preparing to transfer the project to the KubeVirt organization. One requirement is to enhance the modeling design's security. The current v1alpha1 API (the VirtualMachineBMC CRD) was designed during the proof-of-concept stage. It's immature and inherently insecure due to its cross-namespace object references, exposing security concerns from an RBAC perspective.

    The other long-awaited feature is the ability to mount virtual media so that virtual machines can boot from remote ISO images.

    Goals

    1. Deliver the v1beta1 API and its corresponding controller implementation
    2. Enable the Redfish virtual media mount function for KubeVirt virtual machines

    Resources


    Exploring Modern AI Trends and Kubernetes-Based AI Infrastructure by jluo

    Description

    Build a solid understanding of the current landscape of Artificial Intelligence and how modern cloud-native technologies—especially Kubernetes—support AI workloads.

    Goals

    Use Gemini Learning Mode to guide the exploration, surface relevant concepts, and structure the learning journey:

    • Gain insight into the latest AI trends, tools, and architectural concepts.
    • Understand how Kubernetes and related cloud-native technologies are used in the AI ecosystem (model training, deployment, orchestration, MLOps).

    Resources

    • Red Hat AI Topic Articles

      • https://www.redhat.com/en/topics/ai
    • Kubeflow Documentation

      • https://www.kubeflow.org/docs/
    • Q4 2025 CNCF Technology Landscape Radar report:

      • https://www.cncf.io/announcements/2025/11/11/cncf-and-slashdata-report-finds-leading-ai-tools-gaining-adoption-in-cloud-native-ecosystems/
      • https://www.cncf.io/wp-content/uploads/2025/11/cncfreporttechradar_111025a.pdf
    • Agent-to-Agent (A2A) Protocol

      • https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/


    The Agentic Rancher Experiment: Do Androids Dream of Electric Cattle? by moio

    Rancher is a beast of a codebase. Let's investigate if the new 2025 generation of GitHub Autonomous Coding Agents and Copilot Workspaces can actually tame it. A GitHub robot mascot trying to lasso a blue bull with a Kubernetes logo tatooed on it


    The Plan

    Create a sandbox GitHub Organization, clone in key Rancher repositories, and let the AI loose to see if it can handle real-world enterprise OSS maintenance - or if it just hallucinates new breeds of Kubernetes resources!

    Specifically, throw "Agentic Coders" some typical tasks in a complex, long-lived open-source project, such as:


    The Grunt Work: generate missing GoDocs, unit tests, and refactorings. Rebase PRs.

    The Complex Stuff: fix actual (historical) bugs and feature requests to see if they can traverse the complexity without (too much) human hand-holding.

    Hunting Down Gaps: find areas lacking in docs, areas of improvement in code, dependency bumps, and so on.


    If time allows, also experiment with Model Context Protocol (MCP) to give agents context on our specific build pipelines and CI/CD logs.

    Why?

    We know AI can write "Hello World." and also moderately complex programs from a green field. But can it rebase a 3-month-old PR with conflicts in rancher/rancher? I want to find the breaking point of current AI agents to determine if and how they can help us to reduce our technical debt, work faster and better. At the same time, find out about pitfalls and shortcomings.

    The CONCLUSION!!!

    A add-emoji State of the Union add-emoji document was compiled to summarize lessons learned this week. For more gory details, just read on the diary below! add-emoji


    Kubernetes-Based ML Lifecycle Automation by lmiranda

    Description

    This project aims to build a complete end-to-end Machine Learning pipeline running entirely on Kubernetes, using Go, and containerized ML components.

    The pipeline will automate the lifecycle of a machine learning model, including:

    • Data ingestion/collection
    • Model training as a Kubernetes Job
    • Model artifact storage in an S3-compatible registry (e.g. Minio)
    • A Go-based deployment controller that automatically deploys new model versions to Kubernetes using Rancher
    • A lightweight inference service that loads and serves the latest model
    • Monitoring of model performance and service health through Prometheus/Grafana

    The outcome is a working prototype of an MLOps workflow that demonstrates how AI workloads can be trained, versioned, deployed, and monitored using the Kubernetes ecosystem.

    Goals

    By the end of Hack Week, the project should:

    1. Produce a fully functional ML pipeline running on Kubernetes with:

      • Data collection job
      • Training job container
      • Storage and versioning of trained models
      • Automated deployment of new model versions
      • Model inference API service
      • Basic monitoring dashboards
    2. Showcase a Go-based deployment automation component, which scans the model registry and automatically generates & applies Kubernetes manifests for new model versions.

    3. Enable continuous improvement by making the system modular and extensible (e.g., additional models, metrics, autoscaling, or drift detection can be added later).

    4. Prepare a short demo explaining the end-to-end process and how new models flow through the system.

    Resources

    Project Repository

    Updates

    1. Training pipeline and datasets
    2. Inference Service py