Project Description

Implementing an Updatecli Kubernetes operator.

Updatecli is a tool to automate various type of dependencies in a GitOps approach where git repositories are the source of truth.

Goal for this Hackweek

By implementing a basic Kubernetes operator, I am planning to see how much useful Updatecli could be, to automate various resources update.

Resources

  • https://github.com/updatecli/updatecli
  • www.updatecli.io

Looking for hackers with the skills:

golang kubernetes

This project is part of:

Hack Week 21

Activity

  • over 2 years ago: archanaserver started this project.
  • over 2 years ago: olblak added keyword "kubernetes" to this project.
  • over 2 years ago: olblak added keyword "golang" to this project.
  • over 2 years ago: olblak originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    A CLI for Harvester by mohamed.belgaied

    [comment]: # Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI [comment]: # Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. [comment]: # Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.

    Project Description

    Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as: harvester vm create my-vm --count 5 to create 5 VMs named my-vm-01 to my-vm-05.

    asciicast

    Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.

    Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli

    Done in previous Hackweeks

    • Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
    • Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE

    Goal for this Hackweek

    The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.

    Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it

    Issue list is here: https://github.com/belgaied2/harvester-cli/issues

    Resources

    The project is written in Go, and using client-go the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact). Welcome contributions are:

    • Testing it and creating issues
    • Documentation
    • Go code improvement

    What you might learn

    Harvester CLI might be interesting to you if you want to learn more about:

    • GitHub Actions
    • Harvester as a SUSE Product
    • Go programming language
    • Kubernetes API


    Learn enough Golang and hack on CoreDNS by jkuzilek

    Description

    I'm implementing a split-horizon DNS for my home Kubernetes cluster to be able to access my internal (and external) services over the local network through public domains. I managed to make a PoC with the k8s_gateway plugin for CoreDNS. However, I soon found out it responds with IPs for all Gateways assigned to HTTPRoutes, publishing public IPs as well as the internal Loadbalancer ones.

    To remedy this issue, a simple filtering mechanism has to be implemented.

    Goals

    • Learn an acceptable amount of Golang
    • Implement GatewayClass (and IngressClass) filtering for k8s_gateway
    • Deploy on homelab cluster
    • Profit?

    Resources

    EDIT: Feature mostly complete. An unfinished PR lies here. Successfully tested working on homelab cluster.


    Harvester Packer Plugin by mrohrich

    Description

    Hashicorp Packer is an automation tool that allows automatic customized VM image builds - assuming the user has a virtualization tool at their disposal. To make use of Harvester as such a virtualization tool a plugin for Packer needs to be written. With this plugin users could make use of their Harvester cluster to build customized VM images, something they likely want to do if they have a Harvester cluster.

    Goals

    Write a Packer plugin bridging the gap between Harvester and Packer. Users should be able to create customized VM images using Packer and Harvester with no need to utilize another virtualization platform.

    Resources

    Hashicorp documentation for building custom plugins for Packer https://developer.hashicorp.com/packer/docs/plugins/creation/custom-builders

    Source repository of the Harvester Packer plugin https://github.com/m-ildefons/harvester-packer-plugin


    Jenny Static Site Generator by adam.pickering

    Description

    For my personal site I have been using hugo. It works, but I am not satisfied: every time I want to make a change (which is infrequently) I have to read through the documentation again to understand how hugo works. I don't find the documentation easy to use, and the structure of the repository that hugo requires is unintuitive/more complex than what I need. So, I have decided to write my own simple static site generator in Go. It is named Jenny, after my wife.

    Goals

    • Pages can be written in markdown (which is automatically converted to HTML), but other file types are also allowed
    • Easy to understand and use
      • Intuitive, simple design
      • Clear documentation
      • Hot reloading
      • Binaries provided for download
    • Future maintenance is easy
      • Automated releases

    Resources

    https://github.com/adamkpickering/jenny


    file-organizer: A CLI Tool for Efficient File Management by okhatavkar

    Description

    Create a Go-based CLI tool that helps organize files in a specified folder by sorting them into subdirectories based on defined criteria, such as file type or creation date. Users will pass a folder path as an argument, and the tool will process and organize the files within it.

    Goals

    • Develop Go skills by building a practical command-line application.
    • Learn to manage and manipulate files and directories in Go using standard libraries.
    • Create a tool that simplifies file management, making it easier to organize and maintain directories.

    Resources

    • Go Standard Libraries: Utilize os, filepath, and time for file operations.
    • CLI Development: Use flag for basic argument parsing or consider cobra for enhanced functionality.
    • Go Learning Material: Go by Example and The Go Programming Language Documentation.

    Features

    • File Type Sorting: Automatically move files into subdirectories based on their extensions (e.g., documents, images, videos).
    • Date-Based Organization: Add an option to organize files by creation date into year/month folders.
    • User-Friendly CLI: Build intuitive commands and clear outputs for ease of use. This version maintains the core idea of organizing files efficiently while focusing on Go development and practical file management.


    Integrate Backstage with Rancher Manager by nwmacd

    Description

    Backstage (backstage.io) is an open-source, CNCF project that allows you to create your own developer portal. There are many plugins for Backstage.

    This could be a great compliment to Rancher Manager.

    Goals

    Learn and experiment with Backstage and look at how this could be integrated with Rancher Manager. Goal is to have some kind of integration completed in this Hack week.

    Progress

    Screen shot of home page at the end of Hackweek:

    Home

    Day One

    • Got Backstage running locally, understanding configuration with HTTPs.
    • Got Backstage embedded in an IFRAME inside of Rancher
    • Added content into the software catalog (see: https://backstage.io/docs/features/techdocs/getting-started/)
    • Understood more about the entity model

    Day Two

    • Connected Backstage to the Rancher local cluster and configured the Kubernetes plugin.
    • Created Rancher theme to make the light theme more consistent with Rancher

    Home

    Days Three and Day Four

    • Created two backend plugins for Backstage:

      1. Catalog Entity Provider - this imports users from Rancher into Backstage
      2. Auth Provider - uses the proxied sign-in pattern to check the Rancher session cookie, to user that to authenticate the user with Rancher and then log them into Backstage by connecting this to the imported User entity from the catalog entity provider plugin.
    • With this in place, you can single-sign-on between Rancher and Backstage when it is deployed within Rancher. Note this is only when running locally for development at present

    Home

    Home

    Day Five

    • Start to build out a production deployment for all of the above
    • Made some progress, but hit issues with the authentication and proxying when running proxied within Rancher, which needs further investigation


    Setup Kanidm as OIDC provider on Kubernetes by jkuzilek

    Description

    I am planning to upgrade my homelab Kubernetes cluster to the next level and need an OIDC provider for my services, including K8s itself.

    Goals

    • Successfully configure and deploy Kanidm on homelab cluster
    • Integrate with K8s auth
    • Integrate with other services (Envoy Gateway, Container Registry, future deployment of Forgejo?)

    Resources


    Rancher/k8s Trouble-Maker by tonyhansen

    Project Description

    When studying for my RHCSA, I found trouble-maker, which is a program that breaks a Linux OS and requires you to fix it. I want to create something similar for Rancher/k8s that can allow for troubleshooting an unknown environment.

    Goal for this Hackweek

    Create a basic framework for creating Rancher/k8s cluster lab environments as needed for the Break/Fix Create at least 5 modules that can be applied to the cluster and require troubleshooting

    Resources

    https://github.com/rancher/terraform-provider-rancher2 https://github.com/rancher/tf-rancher-up


    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games