Project Description

This project will create a simple chat-bot for tutoring children for school. Lessons will be pre-configured by feeding in a document and requesting the material be taught to a child in consideration of the child's age, etc.

Goal for this Hackweek

Create an interface to have student/teacher logins, where a teacher can configure a lesson for the day. A configured lesson is simply providing initial prompts to the chat-bot.

Resources

https://github.com/dmulder/TinyTutor

Looking for hackers with the skills:

ai python3

This project is part of:

Hack Week 23

Activity

  • about 2 years ago: dfaggioli liked this project.
  • about 2 years ago: dmulder removed keyword education from this project.
  • about 2 years ago: dmulder started this project.
  • about 2 years ago: dmulder added keyword "python3" to this project.
  • about 2 years ago: dmulder added keyword "ai" to this project.
  • about 2 years ago: dmulder added keyword "education" to this project.
  • about 2 years ago: dmulder originated this project.

  • Comments

    • dmulder
      about 2 years ago by dmulder | Reply

      Here is the first video produced by tinytutor: https://youtu.be/4SNXoWxYolU which I generated from the parsed input from https://en.wikipedia.org/wiki/Engineering. The images generated by openai are pretty rough, but good enough to keep kids entertained.

    • dmulder
      about 2 years ago by dmulder | Reply

      Initially I was going to use Alpaca for the text generation, but was encountering some problems. I've decided to simply use the openai api for the time being, and I'll integrate free models at a later time.

    • dmulder
      about 2 years ago by dmulder | Reply

      Here is another video generated today. Worked out a lot of bugs in the process: https://youtu.be/jOImm8P8O4I This one is based on https://en.wikipedia.org/wiki/Architecture.

    • dmulder
      about 2 years ago by dmulder | Reply

      Managed to complete a partial web interface, with authentication and the beginnings of video generation, etc. Will continue next hackweek. I did complete a simple command line tool.

    Similar Projects

    issuefs: FUSE filesystem representing issues (e.g. JIRA) for the use with AI agents code-assistants by llansky3

    Description

    Creating a FUSE filesystem (issuefs) that mounts issues from various ticketing systems (Github, Jira, Bugzilla, Redmine) as files to your local file system.

    And why this is good idea?

    • User can use favorite command line tools to view and search the tickets from various sources
    • User can use AI agents capabilities from your favorite IDE or cli to ask question about the issues, project or functionality while providing relevant tickets as context without extra work.
    • User can use it during development of the new features when you let the AI agent to jump start the solution. The issuefs will give the AI agent the context (AI agents just read few more files) about the bug or requested features. No need for copying and pasting issues to user prompt or by using extra MCP tools to access the issues. These you can still do but this approach is on purpose different.

    Goals

    1. Add Github issue support
    2. Proof the concept/approach by apply the approach on itself using Github issues for tracking and development of new features
    3. Add support for Bugzilla and Redmine using this approach in the process of doing it. Record a video of it.
    4. Clean-up and test the implementation and create some documentation
    5. Create a blog post about this approach

    Resources

    There is a prototype implementation here. This currently sort of works with JIRA only.


    Background Coding Agent by mmanno

    Description

    I had only bad experiences with AI one-shots. However, monitoring agent work closely and interfering often did result in productivity gains.

    Now, other companies are using agents in pipelines. That makes sense to me, just like CI, we want to offload work to pipelines: Our engineering teams are consistently slowed down by "toil": low-impact, repetitive maintenance tasks. A simple linter rule change, a dependency bump, rebasing patch-sets on top of newer releases or API deprecation requires dozens of manual PRs, draining time from feature development.

    So far we have been writing deterministic, script-based automation for these tasks. And it turns out to be a common trap. These scripts are brittle, complex, and become a massive maintenance burden themselves.

    Can we make prompts and workflows smart enough to succeed at background coding?

    Goals

    We will build a platform that allows engineers to execute complex code transformations using prompts.

    By automating this toil, we accelerate large-scale migrations and allow teams to focus on high-value work.

    Our platform will consist of three main components:

    • "Change" Definition: Engineers will define a transformation as a simple, declarative manifest:
      • The target repositories.
      • A wrapper to run a "coding agent", e.g., "gemini-cli".
      • The task as a natural language prompt.
    • "Change" Management Service: A central service that orchestrates the jobs. It will receive Change definitions and be responsible for the job lifecycle.
    • Execution Runners: We could use existing sandboxed CI runners (like GitHub/GitLab runners) to execute each job or spawn a container.

    MVP

    • Define the Change manifest format.
    • Build the core Management Service that can accept and queue a Change.
    • Connect management service and runners, dynamically dispatch jobs to runners.
    • Create a basic runner script that can run a hard-coded prompt against a test repo and open a PR.

    Stretch Goals:

    • Multi-layered approach, Workflow Agents trigger Coding Agents:
      1. Workflow Agent: Gather information about the task interactively from the user.
      2. Coding Agent: Once the interactive agent has refined the task into a clear prompt, it hands this prompt off to the "coding agent." This background agent is responsible for executing the task and producing the actual pull request.
    • Use MCP:
      1. Workflow Agent gathers context information from Slack, Github, etc.
      2. Workflow Agent triggers a Coding Agent.
    • Create a "Standard Task" library with reliable prompts.
      1. Rebasing rancher-monitoring to a new version of kube-prom-stack
      2. Update charts to use new images
      3. Apply changes to comply with a new linter
      4. Bump complex Go dependencies, like k8s modules
      5. Backport pull requests to other branches
    • Add “review agents” that review the generated PR.

    See also


    Is SUSE Trending? Popularity and Developer Sentiment Insight Using Native AI Capabilities by terezacerna

    Description

    This project aims to explore the popularity and developer sentiment around SUSE and its technologies compared to Red Hat and their technologies. Using publicly available data sources, I will analyze search trends, developer preferences, repository activity, and media presence. The final outcome will be an interactive Power BI dashboard that provides insights into how SUSE is perceived and discussed across the web and among developers.

    Goals

    1. Assess the popularity of SUSE products and brand compared to Red Hat using Google Trends.
    2. Analyze developer satisfaction and usage trends from the Stack Overflow Developer Survey.
    3. Use the GitHub API to compare SUSE and Red Hat repositories in terms of stars, forks, contributors, and issue activity.
    4. Perform sentiment analysis on GitHub issue comments to measure community tone and engagement using built-in Copilot capabilities.
    5. Perform sentiment analysis on Reddit comments related to SUSE technologies using built-in Copilot capabilities.
    6. Use Gnews.io to track and compare the volume of news articles mentioning SUSE and Red Hat technologies.
    7. Test the integration of Copilot (AI) within Power BI for enhanced data analysis and visualization.
    8. Deliver a comprehensive Power BI report summarizing findings and insights.
    9. Test the full potential of Power BI, including its AI features and native language Q&A.

    Resources

    1. Google Trends: Web scraping for search popularity data
    2. Stack Overflow Developer Survey: For technology popularity and satisfaction comparison
    3. GitHub API: For repository data (stars, forks, contributors, issues, comments).
    4. Gnews.io API: For article volume and mentions analysis.
    5. Reddit: SUSE related topics with comments.


    Backporting patches using LLM by jankara

    Description

    Backporting Linux kernel fixes (either for CVE issues or as part of general git-fixes workflow) is boring and mostly mechanical work (dealing with changes in context, renamed variables, new helper functions etc.). The idea of this project is to explore usage of LLM for backporting Linux kernel commits to SUSE kernels using LLM.

    Goals

    • Create safe environment allowing LLM to run and backport patches without exposing the whole filesystem to it (for privacy and security reasons).
    • Write prompt that will guide LLM through the backporting process. Fine tune it based on experimental results.
    • Explore success rate of LLMs when backporting various patches.

    Resources

    • Docker
    • Gemini CLI

    Repository

    Current version of the container with some instructions for use are at: https://gitlab.suse.de/jankara/gemini-cli-backporter


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    openQA log viewer by mpagot

    Description

    *** Warning: Are You at Risk for VOMIT? ***

    Do you find yourself staring at a screen, your eyes glossing over as thousands of lines of text scroll by? Do you feel a wave of text-based nausea when someone asks you to "just check the logs"?

    You may be suffering from VOMIT (Verbose Output Mental Irritation Toxicity).

    This dangerous, work-induced ailment is triggered by exposure to an overwhelming quantity of log data, especially from parallel systems. The human brain, not designed to mentally process 12 simultaneous autoinst-log.txt files, enters a state of toxic shock. It rejects the "Verbose Output," making it impossible to find the one critical error line buried in a 50,000-line sea of "INFO: doing a thing."

    Before you're forced to rm -rf /var/log in a fit of desperation, we present the digital antacid.

    No panic: we have The openQA Log Visualizer

    This is the UI antidote for handling toxic log environments. It bravely dives into the chaotic, multi-machine mess of your openQA test runs, finds all the related, verbose logs, and force-feeds them into a parser.

    image

    Goals

    Work on the existing POC openqa-log-visualizer about few specific tasks:

    • add support for more type of logs
    • extend the configuration file syntax beyond the actual one
    • work on log parsing performance

    Find some beta-tester and collect feedback and ideas about features

    If time allow for it evaluate other UI frameworks and solutions (something more simple to distribute and run, maybe more low level to gain in performance).

    Resources

    openqa-log-visualizer


    Improve chore and screen time doc generator script `wochenplaner` by gniebler

    Description

    I wrote a little Python script to generate PDF docs, which can be used to track daily chore completion and screen time usage for several people, with one page per person/week.

    I named this script wochenplaner and have been using it for a few months now.

    It needs some improvements and adjustments in how the screen time should be tracked and how chores are displayed.

    Goals

    • Fix chore field separation lines
    • Change screen time tracking logic from "global" (week-long) to daily subtraction and weekly addition of remainders (more intuitive than current "weekly time budget method)
    • Add logic to fill in chore fields/lines, ideally with pictures, falling back to text.

    Resources

    tbd (Gitlab repo)


    mgr-ansible-ssh - Intelligent, Lightweight CLI for Distributed Remote Execution by deve5h

    Description

    By the end of Hack Week, the target will be to deliver a minimal functional version 1 (MVP) of a custom command-line tool named mgr-ansible-ssh (a unified wrapper for BOTH ad-hoc shell & playbooks) that allows operators to:

    1. Execute arbitrary shell commands on thousand of remote machines simultaneously using Ansible Runner with artifacts saved locally.
    2. Pass runtime options such as inventory file, remote command string/ playbook execution, parallel forks, limits, dry-run mode, or no-std-ansible-output.
    3. Leverage existing SSH trust relationships without additional setup.
    4. Provide a clean, intuitive CLI interface with --help for ease of use. It should provide consistent UX & CI-friendly interface.
    5. Establish a foundation that can later be extended with advanced features such as logging, grouping, interactive shell mode, safe-command checks, and parallel execution tuning.

    The MVP should enable day-to-day operations to efficiently target thousands of machines with a single, consistent interface.

    Goals

    Primary Goals (MVP):

    Build a functional CLI tool (mgr-ansible-ssh) capable of executing shell commands on multiple remote hosts using Ansible Runner. Test the tool across a large distributed environment (1000+ machines) to validate its performance and reliability.

    Looking forward to significantly reducing the zypper deployment time across all 351 RMT VM servers in our MLM cluster by eliminating the dependency on the taskomatic service, bringing execution down to a fraction of the current duration. The tool should also support multiple runtime flags, such as:

    mgr-ansible-ssh: Remote command execution wrapper using Ansible Runner
    
    Usage: mgr-ansible-ssh [--help] [--version] [--inventory INVENTORY]
                       [--run RUN] [--playbook PLAYBOOK] [--limit LIMIT]
                       [--forks FORKS] [--dry-run] [--no-ansible-output]
    
    Required Arguments
    --inventory, -i      Path to Ansible inventory file to use
    
    Any One of the Arguments Is Required
    --run, -r            Execute the specified shell command on target hosts
    --playbook, -p       Execute the specified Ansible playbook on target hosts
    
    Optional Arguments
    --help, -h           Show the help message and exit
    --version, -v        Show the version and exit
    --limit, -l          Limit execution to specific hosts or groups
    --forks, -f          Number of parallel Ansible forks
    --dry-run            Run in Ansible check mode (requires -p or --playbook)
    --no-ansible-output  Suppress Ansible stdout output
    

    Secondary/Stretched Goals (if time permits):

    1. Add pretty output formatting (success/failure summary per host).
    2. Implement basic logging of executed commands and results.
    3. Introduce safety checks for risky commands (shutdown, rm -rf, etc.).
    4. Package the tool so it can be installed with pip or stored internally.

    Resources

    Collaboration is welcome from anyone interested in CLI tooling, automation, or distributed systems. Skills that would be particularly valuable include:

    1. Python especially around CLI dev (argparse, click, rich)


    Improve/rework household chore tracker `chorazon` by gniebler

    Description

    I wrote a household chore tracker named chorazon, which is meant to be deployed as a web application in the household's local network.

    It features the ability to set up different (so far only weekly) schedules per task and per person, where tasks may span several days.

    There are "tokens", which can be collected by users. Tasks can (and usually will) have rewards configured where they yield a certain amount of tokens. The idea is that they can later be redeemed for (surprise) gifts, but this is not implemented yet. (So right now one needs to edit the DB manually to subtract tokens when they're redeemed.)

    Days are not rolled over automatically, to allow for task completion control.

    We used it in my household for several months, with mixed success. There are many limitations in the system that would warrant a revisit.

    It's written using the Pyramid Python framework with URL traversal, ZODB as the data store and Web Components for the frontend.

    Goals

    • Add admin screens for users, tasks and schedules
    • Add models, pages etc. to allow redeeming tokens for gifts/surprises
    • …?

    Resources

    tbd (Gitlab repo)