Netbox-Sync
Imagine this, you are managing your infrastructure for your lab or server farm using the popular NetBox tool. Everytime you install a new machine you connect to it and collect all the system's information to enter into NetBox. Including stuff like system resources, architecture, vendor, type and all the network interfaces. Tedious isn't it?
Well, this is where NetBox-Sync comes in (name subject to change). NetBox-Sync is going to be a CLI application, written in Rust, that will automatically collect your machine's details and send them to your NetBox instance. This will make it easier for you to install and update your inventory.
If you want to learn Rust and help me build this project please reach out to me through the public channels linked in my GitHub Profile, your help is greatly appreciated!
Goal for this Hackweek
There are multiple goals for this Hackweek. Split into the main focus and nice-to-have goals.
Main Focus
- [x] Get a working API client for Netbox-Sync so it can communicate with a Netbox instance
- [ ] Implement functions to create machines/VMs and get a list of existing ones.
- [ ] Implement a "publisher" module to "steer" API calls.
Acceptance criteria for this goal
- [x] NetBox-Sync is correctly addressing the right NetBox URI from config file or CLI according to set hierarchy.
- [ ] The payload data is in the correct format
Nice-To-Have
- [x] Error Handling PR is done and documented correctly.
Resources
NetBox-Sync Repository: https://github.com/ByteOtter/netbox-sync
API-Client PR: https://github.com/ByteOtter/netbox-sync/pull/36
Netbox Documentation: https://docs.netbox.dev/en/stable/
Who I need
People with some Rust knowledge and familiarity with OpenAPI stuff would be a huge help I think. But anyone is welcome! :)
Looking for hackers with the skills:
This project is part of:
Hack Week 23
Activity
Comments
Be the first to comment!
Similar Projects
OpenPlatform Self-Service Portal by tmuntan1
Description
In SUSE IT, we developed an internal developer platform for our engineers using SUSE technologies such as RKE2, SUSE Virtualization, and Rancher. While it works well for our existing users, the onboarding process could be better.
To improve our customer experience, I would like to build a self-service portal to make it easy for people to accomplish common actions. To get started, I would have the portal create Jira SD tickets for our customers to have better information in our tickets, but eventually I want to add automation to reduce our workload.
Goals
- Build a frontend website (Angular) that helps customers create Jira SD tickets.
- Build a backend (Rust with Axum) for the backend, which would do all the hard work for the frontend.
Resources
Mail client with mailing list workflow support in Rust by acervesato
Description
To create a mail user interface using Rust programming language, supporting mailing list patches workflow. I know, aerc is already there, but I would like to create something simpler, without integrated protocols. Just a plain user interface that is using some crates to read and create emails which are fetched and sent via external tools.
I already know Rust, but not the async support, which is needed in this case in order to handle events inside the mail folder and to send notifications.
Goals
- simple user interface in the style of
aerc, with some vim keybindings for motions and search - automatic run of external tools (like
mbsync) for checking emails - automatic run commands for notifications
- apply patch set from ML
- tree-sitter support with styles
Resources
- ratatui: user interface (https://ratatui.rs/)
- notify: folder watcher (https://docs.rs/notify/latest/notify/)
- mail-parser: parser for emails (https://crates.io/crates/mail-parser)
- mail-builder: create emails in proper format (https://docs.rs/mail-builder/latest/mail_builder/)
- gitpatch: ML support (https://crates.io/crates/gitpatch)
- tree-sitter-rust: support for mail format (https://crates.io/crates/tree-sitter)
Looking at Rust if it could be an interesting programming language by jsmeix
Get some basic understanding of Rust security related features from a general point of view.
This Hack Week project is not to learn Rust to become a Rust programmer. This might happen later but it is not the goal of this Hack Week project.
The goal of this Hack Week project is to evaluate if Rust could be an interesting programming language.
An interesting programming language must make it easier to write code that is correct and stays correct when over time others maintain and enhance it than the opposite.
Learn how to use the Relm4 Rust GUI crate by xiaoguang_wang
Relm4 is based on gtk4-rs and compatible with libadwaita. The gtk4-rs crate provides all the tools necessary to develop applications. Building on this foundation, Relm4 makes developing more idiomatic, simpler, and faster.
https://github.com/Relm4/Relm4
RMT.rs: High-Performance Registration Path for RMT using Rust by gbasso
Description
The SUSE Repository Mirroring Tool (RMT) is a critical component for managing software updates and subscriptions, especially for our Public Cloud Team (PCT). In a cloud environment, hundreds or even thousands of new SUSE instances (VPS/EC2) can be provisioned simultaneously. Each new instance attempts to register against an RMT server, creating a "thundering herd" scenario.
We have observed that the current RMT server, written in Ruby, faces performance issues under this high-concurrency registration load. This can lead to request overhead, slow registration times, and outright registration failures, delaying the readiness of new cloud instances.
This Hackweek project aims to explore a solution by re-implementing the performance-critical registration path in Rust. The goal is to leverage Rust's high performance, memory safety, and first-class concurrency handling to create an alternative registration endpoint that is fast, reliable, and can gracefully manage massive, simultaneous request spikes.
The new Rust module will be integrated into the existing RMT Ruby application, allowing us to directly compare the performance of both implementations.
Goals
The primary objective is to build and benchmark a high-performance Rust-based alternative for the RMT server registration endpoint.
Key goals for the week:
- Analyze & Identify: Dive into the
SUSE/rmtRuby codebase to identify and map out the exact critical path for server registration (e.g., controllers, services, database interactions). - Develop in Rust: Implement a functionally equivalent version of this registration logic in Rust.
- Integrate: Explore and implement a method for Ruby/Rust integration to "hot-wire" the new Rust module into the RMT application. This may involve using FFI, or libraries like
rb-sysormagnus. - Benchmark: Create a benchmarking script (e.g., using
k6,ab, or a custom tool) that simulates the high-concurrency registration load from thousands of clients. - Compare & Present: Conduct a comparative performance analysis (requests per second, latency, success/error rates, CPU/memory usage) between the original Ruby path and the new Rust path. The deliverable will be this data and a summary of the findings.
Resources
- RMT Source Code (Ruby):
https://github.com/SUSE/rmt
- RMT Documentation:
https://documentation.suse.com/sles/15-SP7/html/SLES-all/book-rmt.html
- Tooling & Stacks:
- RMT/Ruby development environment (for running the base RMT)
- Rust development environment (
rustup,cargo)
- Potential Integration Libraries:
- rb-sys:
https://github.com/oxidize-rb/rb-sys - Magnus:
https://github.com/matsadler/magnus
- rb-sys:
- Benchmarking Tools:
k6(https://k6.io/)ab(ApacheBench)
A CLI for Harvester by mohamed.belgaied
Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI. Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.
Project Description
Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as:
harvester vm create my-vm --count 5
to create 5 VMs named my-vm-01 to my-vm-05.
Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.
Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli
Done in previous Hackweeks
- Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
- Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE
Goal for this Hackweek
The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.
Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it
Issue list is here: https://github.com/belgaied2/harvester-cli/issues
Resources
The project is written in Go, and using client-go the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact).
Welcome contributions are:
- Testing it and creating issues
- Documentation
- Go code improvement
What you might learn
Harvester CLI might be interesting to you if you want to learn more about:
- GitHub Actions
- Harvester as a SUSE Product
- Go programming language
- Kubernetes API
- Kubevirt API objects (Manipulating VMs and VM Configuration in Kubernetes using Kubevirt)
Rewrite Distrobox in go (POC) by fabriziosestito
Description
Rewriting Distrobox in Go.
Main benefits:
- Easier to maintain and to test
- Adapter pattern for different container backends (LXC, systemd-nspawn, etc.)
Goals
- Build a minimal starting point with core commands
- Keep the CLI interface compatible: existing users shouldn't notice any difference
- Use a clean Go architecture with adapters for different container backends
- Keep dependencies minimal and binary size small
- Benchmark against the original shell script
Resources
- Upstream project: https://github.com/89luca89/distrobox/
- Distrobox site: https://distrobox.it/
- ArchWiki: https://wiki.archlinux.org/title/Distrobox
