Project Description
Software engineers should be proficient in their area of expertise and also have overview of adjacent abstraction layers to understand the world in better context. Despite SUSE is not a hardware company, this project aims at implementing a simple RISC-V processor on a hobby FPGA board.
More details are in project repo's README.
Goal for this Hackweek
- Get familiar with FPGA tools
- Peek into HDL (hardware definition languages)
- Design the CPU using SystemVerilog
- Create a demo program to run on the CPU
- Run the circuit in a simulator and eventually on the FPGA too
- Implement some non-trivial features like pipelining or some instruction set extension
Resources
This project is part of:
Hack Week 23
Activity
Comments
-
about 1 year ago by mkoutny | Reply
We implemented several blocks of the circuitry:
- control (roughly fetch/decode),
- register file,
- ALU,
- block RAM,
- memory control (for unaligned access).
We also implemented memory mapped IO (using serial over USB block provided by TinyFPGA's library).
Additionally, we made a simple demo program and tooling to cross-compile it on non-RISC-V machine and prepare it to "load" it to FPGA board's memory.
Every circuit block is accompanied with (simulator) testsuite and they pass \o/ We didn't manage to run the circuit on FPGA, probably because of memory data preloading or cumbersome IO. That will need more debugging in the future. (Hence we also didn't get down to any of the non-trivial features.)
Similar Projects
Tumbleweed on Mars-CM (RISC-V board) by ph03nix
RISC-V is awesome, Tumbleweed is awesome, chocolate cake is awesome. I'm planning to combine all of them in one project.
Project Description
I recently purchased a MILK-V Mars CM and managed to setup it up already using Debian Linux. My project for this Hackweek is to see how far I can get to run Tumbleweed on this compute module board.
Goal for this Hackweek
- Run Tumbleweed on the Compute Module
Resources
- http://milkv.io/mars-cm
- https://en.opensuse.org/HCL:VisionFive2
Explore Microchip PIC64GX1000 Curiosity board (riscv64) by a_faerber
Description
The Microchip PIC64 family of RISC-V chipsets was announced this summer, with PIC64GX as first subfamily (with SiFive U54 CPU cores, same as Microchip PolarFire). Later families (PIC64-HPSC and PIC64HX) were announced to feature the long-awaited RISC-V Hypervisor Extension.
My pre-ordered PIC64GX1000 Curiosity board arrived the week before Hackweek 24.
Goals
I intend to investigate enabling openSUSE Tumbleweed riscv64 on this new chipset and board.
Resources
Progress
- Created udev rules for Curiosity board's FTDI based debug UARTs on USB-C - UART B has output from HSS / OpenSBI, UART C has output from U-Boot and kernel
- Modified the image https://download.opensuse.org/ports/riscv/tumbleweed/images/openSUSE-Tumbleweed-RISC-V-JeOS-efi.riscv64-2024.11.10-Build1.13.raw.xz (20241118) with gdisk to prepend a bootloader partition (copying the binary bootloader from the vendor-supplied microSD, ignoring excess partition size) and added the microchip/pic64gx-curiosity-kit.dtb file to the EFI System Partition (again from the vendor-supplied microSD)
- This boots into Tumbleweed! with ttyS1 by default (UART C)
Stretch goals
Investigate also the Microchip PolarFire SoC Discovery board.
Progress
The Microchip PolarFire Icicle board and BeagleV-Fire board had previously already been enabled by Torsten Duwe.
- Additional udev rules needed to be created for its FTDI UART bridge chip.
- The board ships with a "FIR filter" demo pre-flashed, not exposing any bootloader, only some demo output on UART C. The board will need to be flashed with a Microchip reference design for Linux.
- The board has an on-board Flash Pro Express JTAG debugger on USB-C. Proprietary Programming and Debug tools software is available from Microchip to download, requiring an account. This should then be able to flash the .job file.
- An in-progress patchset for OpenOCD is available in Gerrit, not yet in the openSUSE package. Presumably OpenOCD would not support Microchip's .job file format.
FizzBuzz OS by mssola
Project Description
FizzBuzz OS (or just fbos
) is an idea I've had in order to better grasp the fundamentals of the low level of a RISC-V machine. In practice, I'd like to build a small Operating System kernel that is able to launch three processes: one that simply prints "Fizz", another that prints "Buzz", and the third which prints "FizzBuzz". These processes are unaware of each other and it's up to the kernel to schedule them by using the timer interrupts as given on openSBI (fizz on % 3 seconds, buzz on % 5 seconds, and fizzbuzz on % 15 seconds).
This kernel provides just one system call, write
, which allows any program to pass the string to be written into stdout.
This project is free software and you can find it here.
Goal for this Hackweek
- Better understand the RISC-V SBI interface.
- Better understand RISC-V in privileged mode.
- Have fun.
Resources
Results
The project was a resounding success Lots of learning, and the initial target was met.
Investigate Milk-V Jupiter board (riscv64) by a_faerber
Description
On Monday of Hackweek 24 we received two Milk-V Jupiter mini-ITX boards (JUPITER_V1.1) via the RISC-V International devboards program. The Jupiter board uses a Spacemit M1 System-on-Chip (SoC).
The Banana Pi BPI-F3 board with related Spacemit K1 SoC had previously already been investigated by Marvin Friedrich.
Goals
Investigate the hardware, any shipping boot firmware and its ability to boot openSUSE Tumbleweed.
Resources
Progress
- On Monday Andreas purchased an ATX power supply, to power up the board.
- According to UART output (note there's two UART pinouts on the board), there appears to be an undocumented U-Boot bootloader in QSPI, in addition to the documented microSD, NVMe and eMMC boot methods.
- The on-board bootloader does not seem to support USB ("No working controllers found").
- Manually loading our GRUB from microSD (via load+bootefi commands from SPI-based U-Boot) works, but in GRUB loading our kernel fails ("error: ../../grub-core/loader/efi/linux.c:521:out of memory.").
- Marvin instead had success flashing a ready-made Bianbu OS image via titantools to microSD card (i.e., a different U-Boot on microSD), that he then modified to load openSUSE kernels instead.
Create openSUSE images for Arm/RISC-V boards by avicenzi
Project Description
Create openSUSE images (or test generic EFI images) for Arm and/or RISC-V boards that are not yet supported.
Goal for this Hackweek
Create bootable images of Tumbleweed for SBCs that currently have no images available or are untested.
Consider generic EFI images where possible, as some boards can hold a bootloader.
Document in the openSUSE Wiki how to flash and use the image for a given board.
Boards that I have around and there are no images:
- Rock 3B
- Nano PC T3 Plus
- Lichee RV D1
- StartFive VisionFive (has some image needs testing)
Hack Week 22
Hack Week 21
Resources