Project Description

We would like to create a single interface for teams to manage our cloud governance.

We currently provide landing zones for AWS, GCP, and Azure, but in providing them, we’re becoming a central bottleneck, as most changes need to go through us. For our cloud usage to grow, we need to improve our processes, and delegate some responsibility when needed, especially in tasks where we’re not the subject-matter experts. We hope to empower everyone, including non-technical employees, to claim ownership over the processes that matter to them, and strengthen our current offerings.

Goal for this Hack Week

One of the major areas for improvement is the processes around tag maintenance. We use tags to manage account ownership, contact information, billing, alerting, and more. Because they’re a central part in our environments, we need to treat them as first-class citizens and ensure they’re always up-to-date. Our current setup setup isn't sufficient: we manage them in four separate repositories (change risk) and cannot easily allow non-technical employees to make changes.

This project was born out of our centralization efforts, a hope that we could manage our tags with care, and the desire to make a solid foundation for our governance to grow.

There is much we would like to accomplish, but here are the scoped tasks for Hack Week 21:

  • To collect cloud tags for cloud providers (starting with AWS).
  • To allow users to edit tags.
  • To detect tag drift (notifications when the tags aren’t what they should be).
  • To have Okta manage users/groups with SCIM.

In last year’s Hack Week, we experimented with a similar concept, but it covered cloud costs. This year, we took the lessons learned, and used parts of it to start our new project. You can view last year’s efforts at our GitHub project.

Resources

Looking for hackers with the skills:

kubernetes golang angular aws azure gcp

This project is part of:

Hack Week 21

Activity

  • over 2 years ago: tmuntan1 joined this project.
  • over 2 years ago: RicardoFelipeKlein started this project.
  • over 2 years ago: RicardoFelipeKlein liked this project.
  • over 2 years ago: tmuntan1 added keyword "kubernetes" to this project.
  • over 2 years ago: tmuntan1 added keyword "golang" to this project.
  • over 2 years ago: tmuntan1 added keyword "angular" to this project.
  • over 2 years ago: tmuntan1 added keyword "aws" to this project.
  • over 2 years ago: tmuntan1 added keyword "azure" to this project.
  • over 2 years ago: tmuntan1 added keyword "gcp" to this project.
  • over 2 years ago: tmuntan1 originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Setup Kanidm as OIDC provider on Kubernetes by jkuzilek

    Description

    I am planning to upgrade my homelab Kubernetes cluster to the next level and need an OIDC provider for my services, including K8s itself.

    Goals

    • Successfully configure and deploy Kanidm on homelab cluster
    • Integrate with K8s auth
    • Integrate with other services (Envoy Gateway, Container Registry, future deployment of Forgejo?)

    Resources


    Introducing "Bottles": A Proof of Concept for Multi-Version CRD Management in Kubernetes by aruiz

    Description

    As we delve deeper into the complexities of managing multiple CRD versions within a single Kubernetes cluster, I want to introduce "Bottles" - a proof of concept that aims to address these challenges.

    Bottles propose a novel approach to isolating and deploying different CRD versions in a self-contained environment. This would allow for greater flexibility and efficiency in managing diverse workloads.

    Goals

    • Evaluate Feasibility: determine if this approach is technically viable, as well as identifying possible obstacles and limitations.
    • Reuse existing technology: leverage existing products whenever possible, e.g. build on top of Kubewarden as admission controller.
    • Focus on Rancher's use case: the ultimate goal is to be able to use this approach to solve Rancher users' needs.

    Resources

    Core concepts:

    • ConfigMaps: Bottles could be defined and configured using ConfigMaps.
    • Admission Controller: An admission controller will detect "bootled" CRDs being installed and replace the resource name used to store them.
    • Aggregated API Server: By analyzing the author of a request, the aggregated API server will determine the correct bottle and route the request accordingly, making it transparent for the user.


    Integrate Backstage with Rancher Manager by nwmacd

    Description

    Backstage (backstage.io) is an open-source, CNCF project that allows you to create your own developer portal. There are many plugins for Backstage.

    This could be a great compliment to Rancher Manager.

    Goals

    Learn and experiment with Backstage and look at how this could be integrated with Rancher Manager. Goal is to have some kind of integration completed in this Hack week.

    Progress

    Screen shot of home page at the end of Hackweek:

    Home

    Day One

    • Got Backstage running locally, understanding configuration with HTTPs.
    • Got Backstage embedded in an IFRAME inside of Rancher
    • Added content into the software catalog (see: https://backstage.io/docs/features/techdocs/getting-started/)
    • Understood more about the entity model

    Day Two

    • Connected Backstage to the Rancher local cluster and configured the Kubernetes plugin.
    • Created Rancher theme to make the light theme more consistent with Rancher

    Home

    Days Three and Day Four

    • Created two backend plugins for Backstage:

      1. Catalog Entity Provider - this imports users from Rancher into Backstage
      2. Auth Provider - uses the proxied sign-in pattern to check the Rancher session cookie, to user that to authenticate the user with Rancher and then log them into Backstage by connecting this to the imported User entity from the catalog entity provider plugin.
    • With this in place, you can single-sign-on between Rancher and Backstage when it is deployed within Rancher. Note this is only when running locally for development at present

    Home

    Home

    Day Five

    • Start to build out a production deployment for all of the above
    • Made some progress, but hit issues with the authentication and proxying when running proxied within Rancher, which needs further investigation


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    Mammuthus - The NFS-Ganesha inside Kubernetes controller by vcheng

    Description

    As the user-space NFS provider, the NFS-Ganesha is wieldy use with serval projects. e.g. Longhorn/Rook. We want to create the Kubernetes Controller to make configuring NFS-Ganesha easy. This controller will let users configure NFS-Ganesha through different backends like VFS/CephFS.

    Goals

    1. Create NFS-Ganesha Package on OBS: nfs-ganesha5, nfs-ganesha6
    2. Create NFS-Ganesha Container Image on OBS: Image
    3. Create a Kubernetes controller for NFS-Ganesha and support the VFS configuration on demand. Mammuthus

    Resources

    NFS-Ganesha


    iSCSI integration in Warewulf by ncuralli

    Description

    This Hackweek project aims to enhance Warewulf’s capabilities by adding iSCSI support, enabling both remote boot and flexible mounting of iSCSI devices within the filesystem. The project, which already handles NFS, DHCP, and iPXE, will be extended to offer iSCSI services as well, centralizing all necessary services for provisioning and booting cluster nodes.

    Goals

    • iSCSI Boot Option: Enable nodes to boot directly from iSCSI volumes
    • Mounting iSCSI Volumes within the Filesystem: Implement support for mounting iSCSI devices at various points within the filesystem

    Resources

    https://warewulf.org/

    Steps

    • add generic framework to handle remote ressource/filesystems to wwctl [ ]
    • add iSCSI handling to wwctl configure [ ]
    • add iSCSI to dracut files [ ]
    • test it [ ]


    Hack on rich terminal user interfaces by amanzini

    Description

    TUIs (Textual User Interface) are a big classic of our daily workflow. Many linux users 'live' in the terminal and modern implementations have a lot to offer : unicode fonts, 24 bit colors etc.

    Goals

    • Explore the current available solution on modern languages and implement a PoC , for example a small maze generator, porting of a classic game or just display the HackWeek cute logo.
    • Practice some Go / Rust coding and programming patterns
    • Fiddle around, hack, learn, have fun
    • keep a development diary, practice on project documentation

    Follow this link for source code repository

    Some ideas for inspiration:

    Related projects:

    Resources


    WebUI for your data by avicenzi

    A single place to view every bit of data you have.

    Problem

    You have too much data and you are a data hoarder.

    • Family photos and videos.
    • Lots of eBooks, TV Shows, Movies, and else.
    • Boxes full of papers (taxes, invoices, IDs, certificates, exams, and else).
    • Bank account statements (multiple currencies, countries, and people).

    Maybe you have some data on S3, some on your NAS, and some on your local PC.

    • How do you get it all together?
    • How do you link a bank transaction to a product invoice?
    • How to tag any object type and create a collection out of it (mix videos, photos, PDFs, transactions)?
    • How to store this? file/folder structure does not work, everything is linked together

    Project Description

    The idea is a place where you can throw all your data, photos, videos, documents, binaries, and else.

    Create photo albums, document collections, add tags across multiple file-formats, link content, and else.

    The UI should be easy to use, where the data is not important for now (could be all S3 or local drive).

    Similar proposals

    The closest I found so far is https://perkeep.org/, but this is not what I'm looking for.

    Goal for this Hackweek

    Create a web UI, in Svelte ideally, perhaps React.

    It should be able to show photos and videos at least.

    Resources

    None so far, this is just an idea.


    Contribute to terraform-provider-libvirt by pinvernizzi

    Description

    The SUSE Manager (SUMA) teams' main tool for infrastructure automation, Sumaform, largely relies on terraform-provider-libvirt. That provider is also widely used by other teams, both inside and outside SUSE.

    It would be good to help the maintainers of this project and give back to the community around it, after all the amazing work that has been already done.

    If you're interested in any of infrastructure automation, Terraform, virtualization, tooling development, Go (...) it is also a good chance to learn a bit about them all by putting your hands on an interesting, real-use-case and complex project.

    Goals

    • Get more familiar with Terraform provider development and libvirt bindings in Go
    • Solve some issues and/or implement some features
    • Get in touch with the community around the project

    Resources


    Harvester Packer Plugin by mrohrich

    Description

    Hashicorp Packer is an automation tool that allows automatic customized VM image builds - assuming the user has a virtualization tool at their disposal. To make use of Harvester as such a virtualization tool a plugin for Packer needs to be written. With this plugin users could make use of their Harvester cluster to build customized VM images, something they likely want to do if they have a Harvester cluster.

    Goals

    Write a Packer plugin bridging the gap between Harvester and Packer. Users should be able to create customized VM images using Packer and Harvester with no need to utilize another virtualization platform.

    Resources

    Hashicorp documentation for building custom plugins for Packer https://developer.hashicorp.com/packer/docs/plugins/creation/custom-builders

    Source repository of the Harvester Packer plugin https://github.com/m-ildefons/harvester-packer-plugin


    Cobbler Angular Web Interface by SchoolGuy

    Project Description

    The old Cobbler webinterface was built into the server, leading to a huge dependency stack only required for a few people.

    Goal for this Hackweek

    The project should aim to finalize the first prototype of the new Angular based web interface.

    A secondary goal of this hackweek is to learn a lot of Angular.

    Update for Hackweek 24

    The GH project received some traction since I have some vacation. As such it is my aim to get a first alpha released to close the milestone 0.0.1 (or whatever version I can release with semantic release).

    Resources


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games