During the last year Askbot, a question and answer oriented internet tool, similar to stack overflow has been tested for internal usage.
The testing went well and it was decided to use the tool in a larger scope.
Trying to prepare the tool for this we found that the source code under https://github.com/ASKBOT/askbot-devel is still Python 2 and not well maintained. As it is not even compatible with current openSUSE Leap 15 and we don't want to run it in some insecure not updatable container we decided after a short discussion that:
Askbot would still be a very valuable tool for SUSE
We want to have it
The best solution to get this done is to port Askbot to Python 3
Aim of this Hackweek project would be to port Askbot to Python 3.
See https://github.com/ASKBOT/askbot-devel/issues/772
Update!
Good news: We're getting help from upstream!
This project is part of:
Hack Week 18
Activity
Comments
-
almost 6 years ago by ssebastianwagner | Reply
I've just joined #askbot on freenode IRC to coordinate things
-
Similar Projects
Make more sense of openQA test results using AI by livdywan
Description
AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.
User Story
Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?
Goals
- Leverage a chat interface to help Allison
- Create a model from scratch based on data from openQA
- Proof of concept for automated analysis of openQA test results
Bonus
- Use AI to suggest solutions to merge conflicts
- This would need a merge conflict editor that can suggest solving the conflict
- Use image recognition for needles
Resources
Timeline
Day 1
- Conversing with open-webui to teach me how to create a model based on openQA test results
- Asking for example code using TensorFlow in Python
- Discussing log files to explore what to analyze
- Drafting a new project called Testimony (based on Implementing a containerized Python action) - the project name was also suggested by the assistant
Day 2
- Using NotebookLLM (Gemini) to produce conversational versions of blog posts
- Researching the possibility of creating a project logo with AI
- Asking open-webui, persons with prior experience and conducting a web search for advice
Highlights
- I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
- Convincing the chat interface to produce code specific to my use case required very explicit instructions.
- Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
- Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses
Outcomes
- Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
- Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.
Saline (state deployment control and monitoring tool for SUSE Manager/Uyuni) by vizhestkov
Project Description
Saline is an addition for salt used in SUSE Manager/Uyuni aimed to provide better control and visibility for states deploymend in the large scale environments.
In current state the published version can be used only as a Prometheus exporter and missing some of the key features implemented in PoC (not published). Now it can provide metrics related to salt events and state apply process on the minions. But there is no control on this process implemented yet.
Continue with implementation of the missing features and improve the existing implementation:
authentication (need to decide how it should be/or not related to salt auth)
web service providing the control of states deployment
Goal for this Hackweek
Implement missing key features
Implement the tool for state deployment control with CLI
Resources
https://github.com/openSUSE/saline
Resurrect NWS CLI project by seanmarlow
Project Description
Many years back I created a simple python based CLI package that wrapped the NWS API to get weather forecasts, discussions and current conditions. Meanwhile I have not had time to keep it up-to-date so many pieces are broken or using deprecated features of the REST API. The package is useful to get weather information much quicker from CLI than clicking through the NWS website.
Goal for this Hackweek
The goal for this project is update and fix the package as well as add new features. Also, the documentation can be updated to be more thorough and useful.
Project URL: https://github.com/smarlowucf/wxcast
Tasks
- [x] Use Github actions instead of travis
- [x] Move metar to nws api
- [x] Convert string formatting to use F strings
- [x] Add get WFO info
- [x] Get a list of stations for wfo
- [x] Get station info
- [x] Fix 7 day forecast
- [x] Add temp unit option to metar
- [x] Add alias to metar for decoded version with conditions
- [x] Add/update documentation
- [x] Release new major version
Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez
Description
Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.
Goals
- Explore Ollama
- Test different models
- Fine tuning
- Explore possible integration in Uyuni
Resources
- https://ollama.com/
- https://huggingface.co/
- https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/
Symbol Relations by hli
Description
There are tools to build function call graphs based on parsing source code, for example, cscope
.
This project aims to achieve a similar goal by directly parsing the disasembly (i.e. objdump) of a compiled binary. The assembly code is what the CPU sees, therefore more "direct". This may be useful in certain scenarios, such as gdb/crash debugging.
Detailed description and Demos can be found in the README file:
Supports x86 for now (because my customers only use x86 machines), but support for other architectures can be added easily.
Tested with python3.6
Goals
Any comments are welcome.
Resources
https://github.com/lhb-cafe/SymbolRelations
symrellib.py: mplements the symbol relation graph and the disassembly parser
symrel_tracer*.py: implements tracing (-t option)
symrel.py: "cli parser"