Project Description

Nanos is a "unikernel" providing a subset of Linux kernel features. It only allows a single process to run, but has multiple threads. It maintains the kernel-land to user-land boundary unlike other unikernels (so perhaps isn't strictly a unikernel).

I want to use it to run apps in VMs. It's very good for this because it behaves like a container from scratch, only pulling in the files it needs. The kernel itself is very small and lightweight. It's possible to produce very small VMs that boot very quickly. More so perhaps than Linux containers running in firecracker microvms.

Goal for this Hackweek

  • Implement clone3 to support newer glibc's. (PR already])
  • (extra) Fix brk syscall (PR)

Resources

Looking for hackers with the skills:

kernel

This project is part of:

Hack Week 21

Activity

  • over 2 years ago: rpalethorpe added keyword "kernel" to this project.
  • over 2 years ago: rpalethorpe originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Kill DMA and DMA32 memory zones by ptesarik

    Description

    Provide a better allocator for DMA-capable buffers, making the DMA and DMA32 zones obsolete.

    Goals

    Make a PoC kernel which can boot a x86 VM and a Raspberry Pi (because early RPi4 boards have some of the weirdest DMA constraints).

    Resources

    • LPC2024 talk:
    • video:


    Modernize ocfs2 by goldwynr

    Ocfs2 has gone into a stage of neglect and disrepair. Modernize the code to generate enough interest.

    Goals: * Change the mount sequence to use fscontext * Move from using bufferhead to bio/folios * Use iomap * Run it through xfstests


    Create a DRM driver for VGA video cards by tdz

    Yes, those VGA video cards. The goal of this project is to implement a DRM graphics driver for such devices. While actual hardware is hard to obtain or even run today, qemu emulates VGA output.

    VGA has a number of limitations, which make this project interesting.

    • There are only 640x480 pixels (or less) on the screen. That resolution is also a soft lower limit imposed by DRM. It's mostly a problem for desktop environments though.
    • Desktop environments assume 16 million colors, but there are only 16 colors with VGA. VGA's 256 color palette is not available at 640x480. We can choose those 16 colors freely. The interesting part is how to choose them. We have to build a palette for the displayed frame and map each color to one of the palette's 16 entries. This is called dithering, and VGA's limitations are a good opportunity to learn about dithering algorithms.
    • VGA has an interesting memory layout. Most graphics devices use linear framebuffers, which store the pixels byte by byte. VGA uses 4 bitplanes instead. Plane 0 holds all bits 0 of all pixels. Plane 1 holds all bits 1 of all pixels, and so on.

    The driver will probably not be useful to many people. But, if finished, it can serve as test environment for low-level hardware. There's some interest in supporting old Amiga and Atari framebuffers in DRM. Those systems have similar limitations as VGA, but are harder to obtain and test with. With qemu, the VGA driver could fill this gap.

    Apart from the Wikipedia entry, good resources on VGA are at osdev.net and FreeVGA


    FizzBuzz OS by mssola

    Project Description

    FizzBuzz OS (or just fbos) is an idea I've had in order to better grasp the fundamentals of the low level of a RISC-V machine. In practice, I'd like to build a small Operating System kernel that is able to launch three processes: one that simply prints "Fizz", another that prints "Buzz", and the third which prints "FizzBuzz". These processes are unaware of each other and it's up to the kernel to schedule them by using the timer interrupts as given on openSBI (fizz on % 3 seconds, buzz on % 5 seconds, and fizzbuzz on % 15 seconds).

    This kernel provides just one system call, write, which allows any program to pass the string to be written into stdout.

    This project is free software and you can find it here.

    Goal for this Hackweek

    • Better understand the RISC-V SBI interface.
    • Better understand RISC-V in privileged mode.
    • Have fun.

    Resources

    Results

    The project was a resounding success add-emoji Lots of learning, and the initial target was met.


    RISC-V emulator in GLSL capable of running Linux by favogt

    Description

    There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.

    I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.

    Goals

    Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.

    Minimum:

    riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.

    Stretch goals:

    FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).

    Resources

    RISC-V ISA Specifications
    Shaderoo
    OpenGL 4.5 Quick Reference Card

    Result as of Hackweek 2024

    WebGL turned out to be insufficient, it only supports OpenGL ES 3.0 but imageLoad/imageStore needs ES 3.1. So we switched directions and had to write a native C++ host for the shaders.

    As of Hackweek Friday, the kernel attempts to boot and outputs messages, but panics due to missing memory regions.

    Since then, some bugs were fixed and enough hardware emulation implemented, so that now Linux boots with framebuffer support and it's possible to log in and run programs!

    The repo with a demo video is available at https://github.com/Vogtinator/risky-v