Project Description
This project will create a CLI utility that will use "microvm" technology (a.k.a. lightweight virtualization) to enable users to create virtual machines and compose these into Kubernetes clusters.
The experience may look something like this (dependent on whether args & config file are supported), to create a VM:
bash
mikrolite vm create --name vm1 --root-image ghcr.io/baseimages/myimage:latest --user-data ud.txt --kernel-cmdline= ....
mikrolite vm create --config spec.json
Or if you want to create a Kubernetes cluster (which will automatically create the required vms):
bash
mikrolite cluster create --name test1 --cp-count=3 --worker-count=3 --cp-root-image=ghcr.io/baseimages/myimage:latest --bootstrap rke2 ...
mikrolite cluster create --config spec.json
Goal for this Hackweek
The goal of the hackweek is to get to a working prototype that does the following:
- create/delete vms
- create/delete cluster using k3s or rke2
There is a new GitHub org to contain this project
Resources
Eventually, it would be good to support multiple microvm implementations (so we need suitable abstractions in code). For hack week, we will add support for either of these, this can be decided upfront or on the first day:
- Firecracker - the cool kids choice, is used to power AWS Fargate and AWS Lambda.
- Cloud Hypervisor - more feature rich, supports PCI passthrough, Windows, confidential compute etc
Working with raw filesystems is painful, so we could use containers and the containerd devmapper snapshotter for volumes. If we want to use config files then we can consider using CUE to validate the config files.
Ideally we would like to allow plugins for the microvm and kubernetes bootstrapper.
Looking for hackers with the skills:
This project is part of:
Hack Week 23
Activity
Comments
Similar Projects
Extending KubeVirtBMC's capability by adding Redfish support by zchang
Description
In Hack Week 23, we delivered a project called KubeBMC (renamed to KubeVirtBMC now), which brings the good old-fashioned IPMI ways to manage virtual machines running on KubeVirt-powered clusters. This opens the possibility of integrating existing bare-metal provisioning solutions like Tinkerbell with virtualized environments. We even received an inquiry about transferring the project to the KubeVirt organization. So, a proposal was filed, which was accepted by the KubeVirt community, and the project was renamed after that. We have many tasks on our to-do list. Some of them are administrative tasks; some are feature-related. One of the most requested features is Redfish support.
Goals
Extend the capability of KubeVirtBMC by adding Redfish support. Currently, the virtbmc component only exposes IPMI endpoints. We need to implement another simulator to expose Redfish endpoints, as we did with the IPMI module. We aim at a basic set of functionalities:
- Power management
- Boot device selection
- Virtual media mount (this one is not so basic
)
Resources
Harvester Packer Plugin by mrohrich
Description
Hashicorp Packer is an automation tool that allows automatic customized VM image builds - assuming the user has a virtualization tool at their disposal. To make use of Harvester as such a virtualization tool a plugin for Packer needs to be written. With this plugin users could make use of their Harvester cluster to build customized VM images, something they likely want to do if they have a Harvester cluster.
Goals
Write a Packer plugin bridging the gap between Harvester and Packer. Users should be able to create customized VM images using Packer and Harvester with no need to utilize another virtualization platform.
Resources
Hashicorp documentation for building custom plugins for Packer https://developer.hashicorp.com/packer/docs/plugins/creation/custom-builders
Source repository of the Harvester Packer plugin https://github.com/m-ildefons/harvester-packer-plugin
Contribute to terraform-provider-libvirt by pinvernizzi
Description
The SUSE Manager (SUMA) teams' main tool for infrastructure automation, Sumaform, largely relies on terraform-provider-libvirt. That provider is also widely used by other teams, both inside and outside SUSE.
It would be good to help the maintainers of this project and give back to the community around it, after all the amazing work that has been already done.
If you're interested in any of infrastructure automation, Terraform, virtualization, tooling development, Go (...) it is also a good chance to learn a bit about them all by putting your hands on an interesting, real-use-case and complex project.
Goals
- Get more familiar with Terraform provider development and libvirt bindings in Go
- Solve some issues and/or implement some features
- Get in touch with the community around the project
Resources
- CONTRIBUTING readme
- Go libvirt library in use by the project
- Terraform plugin development
- "Good first issue" list
SUSE KVM Best Practices by roseswe
Description
SUSE Best Practices around KVM, especially for SAP workloads. Early Google presentation already made from various customer projects and SUSE sources.
Goals
Complete presentation we can reuse in SUSE Consulting projects
Resources
KVM (virt-manager) images
SUSE/SAP/KVM Best Practices
- https://documentation.suse.com/en-us/sles/15-SP6/single-html/SLES-virtualization/
- SAP Note 1522993 - "Linux: SAP on SUSE KVM - Kernel-based Virtual Machine" && 2284516 - SAP HANA virtualized on SUSE Linux Enterprise hypervisors https://me.sap.com/notes/2284516
- SUSECon24: [TUTORIAL-1253] Virtualizing SAP workloads with SUSE KVM || https://youtu.be/PTkpRVpX2PM
- SUSE Best Practices for SAP HANA on KVM - https://documentation.suse.com/sbp/sap-15/html/SBP-SLES4SAP-HANAonKVM-SLES15SP4/index.html
kubectl clone: Seamlessly Clone Kubernetes Resources Across Multiple Rancher Clusters and Projects by dpunia
Description
kubectl clone is a kubectl plugin that empowers users to clone Kubernetes resources across multiple clusters and projects managed by Rancher. It simplifies the process of duplicating resources from one cluster to another or within different namespaces and projects, with optional on-the-fly modifications. This tool enhances multi-cluster resource management, making it invaluable for environments where Rancher orchestrates numerous Kubernetes clusters.
Goals
- Seamless Multi-Cluster Cloning
- Clone Kubernetes resources across clusters/projects with one command.
- Simplifies management, reduces operational effort.
Resources
Rancher & Kubernetes Docs
- Rancher API, Cluster Management, Kubernetes client libraries.
Development Tools
- Kubectl plugin docs, Go programming resources.
Building and Installing the Plugin
- Set Environment Variables: Export the Rancher URL and API token:
export RANCHER_URL="https://rancher.example.com"
export RANCHER_TOKEN="token-xxxxx:xxxxxxxxxxxxxxxxxxxx"
- Build the Plugin: Compile the Go program:
go build -o kubectl-clone ./pkg/
- Install the Plugin:
Move the executable to a directory in your
PATH
:
mv kubectl-clone /usr/local/bin/
Ensure the file is executable:
chmod +x /usr/local/bin/kubectl-clone
- Verify the Plugin Installation: Test the plugin by running:
kubectl clone --help
You should see the usage information for the kubectl-clone
plugin.
Usage Examples
- Clone a Deployment from One Cluster to Another:
kubectl clone --source-cluster c-abc123 --type deployment --name nginx-deployment --target-cluster c-def456 --new-name nginx-deployment-clone
- Clone a Service into Another Namespace and Modify Labels:
Harvester Packer Plugin by mrohrich
Description
Hashicorp Packer is an automation tool that allows automatic customized VM image builds - assuming the user has a virtualization tool at their disposal. To make use of Harvester as such a virtualization tool a plugin for Packer needs to be written. With this plugin users could make use of their Harvester cluster to build customized VM images, something they likely want to do if they have a Harvester cluster.
Goals
Write a Packer plugin bridging the gap between Harvester and Packer. Users should be able to create customized VM images using Packer and Harvester with no need to utilize another virtualization platform.
Resources
Hashicorp documentation for building custom plugins for Packer https://developer.hashicorp.com/packer/docs/plugins/creation/custom-builders
Source repository of the Harvester Packer plugin https://github.com/m-ildefons/harvester-packer-plugin
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
Metrics Server viewer for Kubernetes by bkampen
This project is finished please visit the github repo below for the tool.
Description
Build a CLI tools which can visualize Kubernetes metrics from the metrics-server, so you're able to watch these without installing Prometheus and Grafana on a cluster.
Goals
- Learn more about metrics-server
- Learn more about the inner workings of Kubernetes.
- Learn more about Go
Resources
https://github.com/bvankampen/metrics-viewer
Mammuthus - The NFS-Ganesha inside Kubernetes controller by vcheng
Description
As the user-space NFS provider, the NFS-Ganesha is wieldy use with serval projects. e.g. Longhorn/Rook. We want to create the Kubernetes Controller to make configuring NFS-Ganesha easy. This controller will let users configure NFS-Ganesha through different backends like VFS/CephFS.
Goals
- Create NFS-Ganesha Package on OBS: nfs-ganesha5, nfs-ganesha6
- Create NFS-Ganesha Container Image on OBS: Image
- Create a Kubernetes controller for NFS-Ganesha and support the VFS configuration on demand. Mammuthus
Resources