Introduction

TensorFlow™ is an open-source software library for Machine Intelligence written on Python. It was originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well. (https://www.tensorflow.org/)

Using values recorded by SUSE Manager it should be possible to predict the outcome of certain operations if machine learning is applied. We are especially interested in the time it takes to apply patches to systems. With anecdotal values a neural network should be trained to predict this for future operations. We need do find out which values can and should be provided, which classifier(s) to use, aso.

Goals:

  • Monday:

    • Learn about Tensorflow: Definitions, how to create a model, different frameworks, etc
    • Define set of features that can be gathered from the SUSE Manager DB to create our dataset.
    • Explore the values of the dataset: Know about min-max values, boundaries, type of data (categorical, continuous).
    • Define crossed relation between data (crossed columns).
    • Is our dataset good enough?
  • Tuesday:

    • Create and test different tensorflow models: DNNCombinedLinearClassifier, DNNClassifier, etc
    • Are those models' estimations good enough?
    • Is tensorflow suitable for achiving the project goal? are estimation good enough for us?
    • Upload working example.

Outcomes:

  • Initial dataset was not really good. We modified the SQL query to collect also package ids.
  • In the past we restricted the dataset to only contain actions for erratas which only contains one package, but the resulting dataset was not big enough.
  • We implemented a DNNRegressor.
  • Dataset: COLUMNS = ["server_id","errata_id","nrcpu","mhz","ram","package_id","size","time"] (we only currently use server_id, errata_id, package_id)
  • Currently the dataset is based patch installation actions which contains only a one single errata but this errata can have multiple packages associated.
  • We don't know the installation time for a package, because the "time" data we have is for the complete action, so we do a very draft estimation just dividing the total time by the number of packages the errata contains.
  • Estimations seems to be good enough, of course, the database still needs to be improved as well as the model itself where the feature columns definition can be adjusted to get better results.
  • Current estimations are good enough to, at least, give an estimation saying if the action you're planning is going to take less than ~10 seconds, ~30 seconds, ~1 minute, ~5 minutes, etc.

Some samples of estimations:

expected -> estimated

0.233874837557475 -> 0.230502188205719
0.233874837557475 -> 0.25423765182495117
0.233874837557475 -> 0.1823016107082367
0.979458148662861 -> 0.8299890756607056
0.979458148662861 -> 0.8462812900543213
0.211660345395406 -> 0.22346541285514832
1.70577935377757 -> 1.9606330394744873
2.60000002384186 -> 2.39455509185791
0.976182460784912 -> 0.1866598129272461
0.976182460784912 -> 0.614652693271637
2.80241966247559 -> 1.0975050926208496
0.6621074676513671 -> 0.6865990161895752
0.0968895809991019 -> 0.041620612144470215
0.0968895809991019 -> 0.1236574649810791
0.0968895809991019 -> 0.05707252025604248
1.3669094741344499 -> 2.2393956184387207
1.3669094741344499 -> 2.2393956184387207

"Actual" vs "Predicted" screenshots:

Screenshot1

Full graph: view full graph here

Next steps:

  • Refinement of model and dataset
  • Add actions with multiple errata to the dataset
  • Implement also a DNNClassifier to directly classifing instead of getting a float number (possible classes: seconds, minutes, hours).
  • POC of integration with the SUSE Manager UI
  • Refeed the neural network with the actual results of the new actions on SUSE Manager.
  • Replace package_id with something consistent across customers (eg: package name)
  • Try to find a way to avoid averaging the time per package on erratas that point to multiple packages
  • Estimate the actual action (not per package)

Code repository: Internal GitLab

Looking for hackers with the skills:

tensorflow python machinelearning susemanager

This project is part of:

Hack Week 16

Activity

  • over 7 years ago: bfilho liked this project.
  • about 8 years ago: j_renner liked this project.
  • about 8 years ago: PSuarezHernandez added keyword "tensorflow" to this project.
  • about 8 years ago: PSuarezHernandez added keyword "python" to this project.
  • about 8 years ago: PSuarezHernandez added keyword "machinelearning" to this project.
  • about 8 years ago: PSuarezHernandez added keyword "susemanager" to this project.
  • about 8 years ago: mdinca liked this project.
  • about 8 years ago: dmaiocchi liked this project.
  • about 8 years ago: dmaiocchi disliked this project.
  • about 8 years ago: dmaiocchi liked this project.
  • about 8 years ago: mdinca joined this project.
  • about 8 years ago: PSuarezHernandez liked this project.
  • about 8 years ago: jochenbreuer joined this project.
  • about 8 years ago: PSuarezHernandez started this project.
  • about 8 years ago: PSuarezHernandez originated this project.

  • Comments

    • PSuarezHernandez
      about 8 years ago by PSuarezHernandez | Reply

      The outcomes from this HW project has been published!! The project page has been updated to include the results!

    Similar Projects

    Improve/rework household chore tracker `chorazon` by gniebler

    Description

    I wrote a household chore tracker named chorazon, which is meant to be deployed as a web application in the household's local network.

    It features the ability to set up different (so far only weekly) schedules per task and per person, where tasks may span several days.

    There are "tokens", which can be collected by users. Tasks can (and usually will) have rewards configured where they yield a certain amount of tokens. The idea is that they can later be redeemed for (surprise) gifts, but this is not implemented yet. (So right now one needs to edit the DB manually to subtract tokens when they're redeemed.)

    Days are not rolled over automatically, to allow for task completion control.

    We used it in my household for several months, with mixed success. There are many limitations in the system that would warrant a revisit.

    It's written using the Pyramid Python framework with URL traversal, ZODB as the data store and Web Components for the frontend.

    Goals

    • Add admin screens for users, tasks and schedules
    • Add models, pages etc. to allow redeeming tokens for gifts/surprises
    • …?

    Resources

    tbd (Gitlab repo)


    HTTP API for nftables by crameleon

    Background

    The idea originated in https://progress.opensuse.org/issues/164060 and is about building RESTful API which translates authorized HTTP requests to operations in nftables, possibly utilizing libnftables-json(5).

    Originally, I started developing such an interface in Go, utilizing https://github.com/google/nftables. The conversion of string networks to nftables set elements was problematic (unfortunately no record of details), and I started a second attempt in Python, which made interaction much simpler thanks to native nftables Python bindings.

    Goals

    1. Find and track the issue with google/nftables
    2. Revisit and polish the Go or Python code (prefer Go, but possibly depends on implementing missing functionality), primarily the server component
    3. Finish functionality to interact with nftables sets (retrieving and updating elements), which are of interest for the originating issue
    4. Align test suite
    5. Packaging

    Resources

    • https://git.netfilter.org/nftables/tree/py/src/nftables.py
    • https://git.com.de/Georg/nftables-http-api (to be moved to GitHub)
    • https://build.opensuse.org/package/show/home:crameleon:containers/pytest-nftables-container

    Results

    • Go nftables issue was related to set elements needing to be added with different start and end addresses - coincidentally, this was recently discovered by someone else, who added a useful helper function for this: https://github.com/google/nftables/pull/342.

    Side results

    Upon starting to unify the structure and implementing more functionality, missing JSON output support was noticed for some subcommands in libnftables. I am submitting patches as needed:

    • https://lore.kernel.org/netfilter-devel/20251203131736.4036382-2-georg@syscid.com/T/#u


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt (including bootstrapping with bootstrap script) and Salt-ssh clients

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    In progress/done for Hack Week 25

    Guide

    We started writin a Guide: Adding a new client GNU Linux distribution to Uyuni at https://github.com/uyuni-project/uyuni/wiki/Guide:-Adding-a-new-client-GNU-Linux-distribution-to-Uyuni, to make things easier for everyone, specially those not too familiar wht Uyuni or not technical.

    openSUSE Leap 16.0

    The distribution will all love!

    https://en.opensuse.org/openSUSE:Roadmap#DRAFTScheduleforLeap16.0

    Curent Status We started last year, it's complete now for Hack Week 25! :-D

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file) NOTE: Done, client tools for SLMicro6 are using as those for SLE16.0/openSUSE Leap 16.0 are not available yet
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [W] Package management (install, remove, update...). Works, even reboot requirement detection


    Improve chore and screen time doc generator script `wochenplaner` by gniebler

    Description

    I wrote a little Python script to generate PDF docs, which can be used to track daily chore completion and screen time usage for several people, with one page per person/week.

    I named this script wochenplaner and have been using it for a few months now.

    It needs some improvements and adjustments in how the screen time should be tracked and how chores are displayed.

    Goals

    • Fix chore field separation lines
    • Change screen time tracking logic from "global" (week-long) to daily subtraction and weekly addition of remainders (more intuitive than current "weekly time budget method)
    • Add logic to fill in chore fields/lines, ideally with pictures, falling back to text.

    Resources

    tbd (Gitlab repo)


    Collection and organisation of information about Bulgarian schools by iivanov

    Description

    To achieve this it will be necessary:

    • Collect/download raw data from various government and non-governmental organizations
    • Clean up raw data and organise it in some kind database.
    • Create tool to make queries easy.
    • Or perhaps dump all data into AI and ask questions in natural language.

    Goals

    By selecting particular school information like this will be provided:

    • School scores on national exams.
    • School scores from the external evaluations exams.
    • School town, municipality and region.
    • Employment rate in a town or municipality.
    • Average health of the population in the region.

    Resources

    Some of these are available only in bulgarian.

    • https://danybon.com/klasazia
    • https://nvoresults.com/index.html
    • https://ri.mon.bg/active-institutions
    • https://www.nsi.bg/nrnm/ekatte/archive


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    Set Uyuni to manage edge clusters at scale by RDiasMateus

    Description

    Prepare a Poc on how to use MLM to manage edge clusters. Those cluster are normally equal across each location, and we have a large number of them.

    The goal is to produce a set of sets/best practices/scripts to help users manage this kind of setup.

    Goals

    step 1: Manual set-up

    Goal: Have a running application in k3s and be able to update it using System Update Controler (SUC)

    • Deploy Micro 6.2 machine
    • Deploy k3s - single node

      • https://docs.k3s.io/quick-start
    • Build/find a simple web application (static page)

      • Build/find a helmchart to deploy the application
    • Deploy the application on the k3s cluster

    • Install App updates through helm update

    • Install OS updates using MLM

    step 2: Automate day 1

    Goal: Trigger the application deployment and update from MLM

    • Salt states For application (with static data)
      • Deploy the application helmchart, if not present
      • install app updates through helmchart parameters
    • Link it to GIT
      • Define how to link the state to the machines (based in some pillar data? Using configuration channels by importing the state? Naming convention?)
      • Use git update to trigger helmchart app update
    • Recurrent state applying configuration channel?

    step 3: Multi-node cluster

    Goal: Use SUC to update a multi-node cluster.

    • Create a multi-node cluster
    • Deploy application
      • call the helm update/install only on control plane?
    • Install App updates through helm update
    • Prepare a SUC for OS update (k3s also? How?)
      • https://github.com/rancher/system-upgrade-controller
      • https://documentation.suse.com/cloudnative/k3s/latest/en/upgrades/automated.html
      • Update/deploy the SUC?
      • Update/deploy the SUC CRD with the update procedure


    Enhance setup wizard for Uyuni by PSuarezHernandez

    Description

    This project wants to enhance the intial setup on Uyuni after its installation, so it's easier for a user to start using with it.

    Uyuni currently uses "uyuni-tools" (mgradm) as the installation entrypoint, to trigger the installation of Uyuni in the given host, but does not really perform an initial setup, for instance:

    • user creation
    • adding products / channels
    • generating bootstrap repos
    • create activation keys
    • ...

    Goals

    • Provide initial setup wizard as part of mgradm uyuni installation

    Resources


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt (including bootstrapping with bootstrap script) and Salt-ssh clients

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    In progress/done for Hack Week 25

    Guide

    We started writin a Guide: Adding a new client GNU Linux distribution to Uyuni at https://github.com/uyuni-project/uyuni/wiki/Guide:-Adding-a-new-client-GNU-Linux-distribution-to-Uyuni, to make things easier for everyone, specially those not too familiar wht Uyuni or not technical.

    openSUSE Leap 16.0

    The distribution will all love!

    https://en.opensuse.org/openSUSE:Roadmap#DRAFTScheduleforLeap16.0

    Curent Status We started last year, it's complete now for Hack Week 25! :-D

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file) NOTE: Done, client tools for SLMicro6 are using as those for SLE16.0/openSUSE Leap 16.0 are not available yet
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [W] Package management (install, remove, update...). Works, even reboot requirement detection