Motivation

The PostgreSQL database implementation is an integral part of many important software stacks, most importantly for me openQA. I learned database "by doing" but never properly. Given that we recently had (again) an incident related to specific details of how a database behaves under load maybe it's time to learn more about PostgreSQL.

Goals

  • G1: A significant portion of PostgreSQL learning material has been covered

Execution

Results

Looking for hackers with the skills:

database postgresql server openqa learning book reading

This project is part of:

Hack Week 21 Hack Week 22

Activity

  • almost 3 years ago: okurz started this project.
  • over 3 years ago: szarate liked this project.
  • over 3 years ago: okurz added keyword "database" to this project.
  • over 3 years ago: okurz added keyword "postgresql" to this project.
  • over 3 years ago: okurz added keyword "server" to this project.
  • over 3 years ago: okurz added keyword "openqa" to this project.
  • over 3 years ago: okurz added keyword "learning" to this project.
  • over 3 years ago: okurz added keyword "book" to this project.
  • over 3 years ago: okurz added keyword "reading" to this project.
  • over 3 years ago: okurz originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Work on kqlite (Lightweight remote SQLite with high availability and auto failover). by epenchev

    Description

    Continue the work on kqlite (Lightweight remote SQLite with high availability and auto failover).
    It's a solution for applications that require High Availability but don't need all the features of a complete RDBMS and can fit SQLite in their use case.
    Also kqlite can be considered to be used as a lightweight storage backend for K8s (https://docs.k3s.io/datastore) and the Edge, and allowing to have only 2 Nodes for HA.

    Goals

    Push kqlite to a beta version.
    kqlite as library for Go programs.

    Resources

    https://github.com/kqlite/kqlite


    Uyuni read-only replica by cbosdonnat

    Description

    For now, there is no possible HA setup for Uyuni. The idea is to explore setting up a read-only shadow instance of an Uyuni and make it as useful as possible.

    Possible things to look at:

    • live sync of the database, probably using the WAL. Some of the tables may have to be skipped or some features disabled on the RO instance (taskomatic, PXT sessions…)
    • Can we use a load balancer that routes read-only queries to either instance and the other to the RW one? For example, packages or PXE data can be served by both, the API GET requests too. The rest would be RW.

    Goals

    • Prepare a document explaining how to do it.
    • PR with the needed code changes to support it


    Casky – Lightweight C Key-Value Engine with Crash Recovery by pperego

    Description

    Casky is a lightweight, crash-safe key-value store written in C, designed for fast storage and retrieval of data with a minimal footprint. Built using Test-Driven Development (TDD), Casky ensures reliability while keeping the codebase clean and maintainable. It is inspired by Bitcask and aims to provide a simple, embeddable storage engine that can be integrated into microservices, IoT devices, and other C-based applications.

    Objectives:

    • Implement a minimal key-value store with append-only file storage.
    • Support crash-safe persistence and recovery.
    • Expose a simple public API: store(key, value), load(key), delete(key).
    • Follow TDD methodology for robust and testable code.
    • Provide a foundation for future extensions, such as in-memory caching, compaction, and eventual integration with vector-based databases like PixelDB.

    Why This Project is Interesting:

    Casky combines low-level C programming with modern database concepts, making it an ideal playground to explore storage engines, crash safety, and performance optimization. It’s small enough to complete during Hackweek, yet it provides a solid base for future experiments and more complex projects.

    Goals

    • Working prototype with append-only storage and memtable.
    • TDD test suite covering core functionality and recovery.
    • Demonstration of basic operations: insert, load, delete.
    • Optional bonus: LRU caching, file compaction, performance benchmarks.

    Future Directions:

    After Hackweek, Casky can evolve into a backend engine for projects like PixelDB, supporting vector storage and approximate nearest neighbor search, combining low-level performance with cutting-edge AI retrieval applications.

    Resources

    The Bitcask paper: https://riak.com/assets/bitcask-intro.pdf The Casky repository: https://github.com/thesp0nge/casky

    Day 1

    [0.10.0] - 2025-12-01

    Added

    • Core in-memory KeyDir and EntryNode structures
    • API functions: caskyopen, caskyclose, caskyput, caskyget, casky_delete
    • Hash function: caskydjb2hash_xor
    • Error handling via casky_errno
    • Unit tests for all APIs using standard asserts
    • Test cleanup of temporary files

    Changed

    • None (first MVP)

    Fixed

    • None (first MVP)

    Day 2

    [0.20.0] - 2025-12-02


    Collection and organisation of information about Bulgarian schools by iivanov

    Description

    To achieve this it will be necessary:

    • Collect/download raw data from various government and non-governmental organizations
    • Clean up raw data and organise it in some kind database.
    • Create tool to make queries easy.
    • Or perhaps dump all data into AI and ask questions in natural language.

    Goals

    By selecting particular school information like this will be provided:

    • School scores on national exams.
    • School scores from the external evaluations exams.
    • School town, municipality and region.
    • Employment rate in a town or municipality.
    • Average health of the population in the region.

    Resources

    Some of these are available only in bulgarian.

    • https://danybon.com/klasazia
    • https://nvoresults.com/index.html
    • https://ri.mon.bg/active-institutions
    • https://www.nsi.bg/nrnm/ekatte/archive


    Sim racing track database by avicenzi

    Description

    Do you wonder which tracks are available in each sim racing game? Wonder no more.

    Goals

    Create a simple website that includes details about sim racing games.

    The website should be static and built with Alpine.JS and TailwindCSS. Data should be consumed from JSON, easily done with Alpine.JS.

    The main goal is to gather track information, because tracks vary by game. Older games might have older layouts, and newer games might have up-to-date layouts. Some games include historical layouts, some are laser scanned. Many tracks are available as DLCs.

    Initially include official tracks from:

    • ACC
    • iRacing
    • PC2
    • LMU
    • Raceroom
    • Rennsport

    These games have a short list of tracks and DLCs.

    Resources

    The hardest part is collecting information about tracks in each game. Active games usually have information on their website or even on Steam. Older games might be on Fandom or a Wiki. Real track information can be extracted from Wikipedia or the track website.


    Uyuni read-only replica by cbosdonnat

    Description

    For now, there is no possible HA setup for Uyuni. The idea is to explore setting up a read-only shadow instance of an Uyuni and make it as useful as possible.

    Possible things to look at:

    • live sync of the database, probably using the WAL. Some of the tables may have to be skipped or some features disabled on the RO instance (taskomatic, PXT sessions…)
    • Can we use a load balancer that routes read-only queries to either instance and the other to the RW one? For example, packages or PXE data can be served by both, the API GET requests too. The rest would be RW.

    Goals

    • Prepare a document explaining how to do it.
    • PR with the needed code changes to support it


    openQA tests needles elaboration using AI image recognition by mdati

    Description

    In the openQA test framework, to identify the status of a target SUT image, a screenshots of GUI or CLI-terminal images, the needles framework scans the many pictures in its repository, having associated a given set of tags (strings), selecting specific smaller parts of each available image. For the needles management actually we need to keep stored many screenshots, variants of GUI and CLI-terminal images, eachone accompanied by a dedicated set of data references (json).

    A smarter framework, using image recognition based on AI or other image elaborations tools, nowadays widely available, could improve the matching process and hopefully reduce time and errors, during the images verification and detection process.

    Goals

    Main scope of this idea is to match a "graphical" image of the console or GUI status of a running openQA test, an image of a shell console or application-GUI screenshot, using less time and resources and with less errors in data preparation and use, than the actual openQA needles framework; that is:

    • having a given SUT (system under test) GUI or CLI-terminal screenshot, with a local distribution of pixels or text commands related to a running test status,
    • we want to identify a desired target, e.g. a screen image status or data/commands context,
      • based on AI/ML-pretrained archives containing object or other proper elaboration tools,
      • possibly able to identify also object not present in the archive, i.e. by means of AI/ML mechanisms.
    • the matching result should be then adapted to continue working in the openQA test, likewise and in place of the same result that would have been produced by the original openQA needles framework.
    • We expect an improvement of the matching-time(less time), reliability of the expected result(less error) and simplification of archive maintenance in adding/removing objects(smaller DB and less actions).

    Hackweek POC:

    Main steps

    • Phase 1 - Plan
      • study the available tools
      • prepare a plan for the process to build
    • Phase 2 - Implement
      • write and build a draft application
    • Phase 3 - Data
      • prepare the data archive from a subset of needles
      • initialize/pre-train the base archive
      • select a screenshot from the subset, removing/changing some part
    • Phase 4 - Test
      • run the POC application
      • expect the image type is identified in a good %.

    Resources

    First step of this project is quite identification of useful resources for the scope; some possibilities are:

    • SUSE AI and other ML tools (i.e. Tensorflow)
    • Tools able to manage images
    • RPA test tools (like i.e. Robot framework)
    • other.

    Project references


    openQA log viewer by mpagot

    Description

    *** Warning: Are You at Risk for VOMIT? ***

    Do you find yourself staring at a screen, your eyes glossing over as thousands of lines of text scroll by? Do you feel a wave of text-based nausea when someone asks you to "just check the logs"?

    You may be suffering from VOMIT (Verbose Output Mental Irritation Toxicity).

    This dangerous, work-induced ailment is triggered by exposure to an overwhelming quantity of log data, especially from parallel systems. The human brain, not designed to mentally process 12 simultaneous autoinst-log.txt files, enters a state of toxic shock. It rejects the "Verbose Output," making it impossible to find the one critical error line buried in a 50,000-line sea of "INFO: doing a thing."

    Before you're forced to rm -rf /var/log in a fit of desperation, we present the digital antacid.

    No panic: we have The openQA Log Visualizer

    This is the UI antidote for handling toxic log environments. It bravely dives into the chaotic, multi-machine mess of your openQA test runs, finds all the related, verbose logs, and force-feeds them into a parser.

    image

    Goals

    Work on the existing POC openqa-log-visualizer about few specific tasks:

    • add support for more type of logs
    • extend the configuration file syntax beyond the actual one
    • work on log parsing performance

    Find some beta-tester and collect feedback and ideas about features

    If time allow for it evaluate other UI frameworks and solutions (something more simple to distribute and run, maybe more low level to gain in performance).

    Resources

    openqa-log-visualizer


    MCP Perl SDK by kraih

    Description

    We've been using the MCP Perl SDK to connect openQA with AI. And while the basics are working pretty well, the SDK is not fully spec compliant yet. So let's change that!

    Goals

    • Support for Resources
    • All response types (Audio, Resource Links, Embedded Resources...)
    • Tool/Prompt/Resource update notifications
    • Dynamic Tool/Prompt/Resource lists
    • New authentication mechanisms

    Resources


    Kubernetes-Based ML Lifecycle Automation by lmiranda

    Description

    This project aims to build a complete end-to-end Machine Learning pipeline running entirely on Kubernetes, using Go, and containerized ML components.

    The pipeline will automate the lifecycle of a machine learning model, including:

    • Data ingestion/collection
    • Model training as a Kubernetes Job
    • Model artifact storage in an S3-compatible registry (e.g. Minio)
    • A Go-based deployment controller that automatically deploys new model versions to Kubernetes using Rancher
    • A lightweight inference service that loads and serves the latest model
    • Monitoring of model performance and service health through Prometheus/Grafana

    The outcome is a working prototype of an MLOps workflow that demonstrates how AI workloads can be trained, versioned, deployed, and monitored using the Kubernetes ecosystem.

    Goals

    By the end of Hack Week, the project should:

    1. Produce a fully functional ML pipeline running on Kubernetes with:

      • Data collection job
      • Training job container
      • Storage and versioning of trained models
      • Automated deployment of new model versions
      • Model inference API service
      • Basic monitoring dashboards
    2. Showcase a Go-based deployment automation component, which scans the model registry and automatically generates & applies Kubernetes manifests for new model versions.

    3. Enable continuous improvement by making the system modular and extensible (e.g., additional models, metrics, autoscaling, or drift detection can be added later).

    4. Prepare a short demo explaining the end-to-end process and how new models flow through the system.

    Resources

    Project Repository


    Advent of Code: The Diaries by amanzini

    Description

    It was the Night Before Compile Time ...

    Hackweek 25 (December 1-5) perfectly coincides with the first five days of Advent of Code 2025. This project will leverage this overlap to participate in the event in real-time.

    To add a layer of challenge and exploration (in the true spirit of Hackweek), the puzzles will be solved using a non-mainstream, modern language like Ruby, D, Crystal, Gleam or Zig.

    The primary project intent is not just simply to solve the puzzles, but to exercise result sharing and documentation. I'd create a public-facing repository documenting the process. This involves treating each day's puzzle as a mini-project: solving it, then documenting the solution with detailed write-ups, analysis of the language's performance and ergonomics, and visualizations.

                                   |
                                 \ ' /
                               -- (*) --
                                  >*<
                                 >0<@<
                                >>>@<<*
                               >@>*<0<<<
                              >*>>@<<<@<<
                             >@>>0<<<*<<@<
                            >*>>0<<@<<<@<<<
                           >@>>*<<@<>*<<0<*<
             \*/          >0>>*<<@<>0><<*<@<<
         ___\\U//___     >*>>@><0<<*>>@><*<0<<
         |\\ | | \\|    >@>>0<*<0>>@<<0<<<*<@<<
         | \\| | _(UU)_ >((*))_>0><*<0><@<<<0<*<
         |\ \| || / //||.*.*.*.|>>@<<*<<@>><0<<<
         |\\_|_|&&_// ||*.*.*.*|_\\db//_
         """"|'.'.'.|~~|.*.*.*|     ____|_
             |'.'.'.|   ^^^^^^|____|>>>>>>|
             ~~~~~~~~         '""""`------'
    ------------------------------------------------
    This ASCII pic can be found at
    https://asciiart.website/art/1831
    
    

    Goals

    Code, Docs, and Memes: An AoC Story

    • Have fun!

    • Involve more people, play together

    • Solve Days 1-5: Successfully solve both parts of the Advent of Code 2025 puzzles for Days 1-5 using the chosen non-mainstream language.

    • Daily Documentation & Language Review: Publish a detailed write-up for each day. This documentation will include the solution analysis, the chosen algorithm, and specific commentary on the language's ergonomics, performance, and standard library for the given task.


    Learn about Software Architecture and Domain-Driven Design by gniebler

    Description

    I've started my journey learning about Software Architecture by reading (and working through) the book "Head First Software Architecture" (and I hope to have it read through a 2nd time by the time HackWeek begins).

    Now it's time to continue with my reading list (and ideally expand into the related field of Domain-Driven Design).

    Goals

    Read (and understand!) as much as possible from any the following books (not necessarily in the order given):

    • Fundamentals of Software Architecture
    • Software Architecture Patterns
    • Software Architecture: The Hard Parts
    • Building Evolutionary Architectures
    • Domain-Driven Design: Tackling Complexity in the Heart of Software
    • Learning Domain-Driven Design

    While also taking copious notes along the way.

    Resources

    I have most of these as ebooks and the rest are on O'Reilly Learning. : : :