Description

Learn how to integrate Elixir and Phoenix Liveview with LLMs by building an application that can provide answers to user queries based on a corpus of custom-trained data.

Goals

Develop an Elixir application via the Phoenix framework that:

  • Employs Retrieval Augmented Generation (RAG) techniques
  • Supports the integration and utilization of various Large Language Models (LLMs).
  • Is designed with extensibility and adaptability in mind to accommodate future enhancements and modifications.

Resources

  • https://elixir-lang.org/
  • https://www.phoenixframework.org/
  • https://github.com/elixir-nx/bumblebee
  • https://ollama.com/

Looking for hackers with the skills:

elixir-lang ollama ai

This project is part of:

Hack Week 24

Activity

  • 2 months ago: mpiala liked this project.
  • 2 months ago: socon liked this project.
  • 3 months ago: ninopaparo added keyword "ai" to this project.
  • 3 months ago: ncuralli started this project.
  • 3 months ago: ninopaparo added keyword "elixir-lang" to this project.
  • 3 months ago: ninopaparo added keyword "ollama" to this project.
  • 3 months ago: ninopaparo originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Multi-pod, autoscalable Elixir application in Kubernetes using K8s resources by socon

    Description

    Elixir / Erlang use their own solutions to create clusters that work together. Kubernetes provide its own orchestration. Due to the nature of the BEAM, it looks a very promising technology for applications that run in Kubernetes and requite to be always on, specifically if they are created as web pages using Phoenix.

    Goals

    • Investigate and provide solutions that work in Phoenix LiveView using Kubernetes resources, so a multi-pod application can be used
    • Provide an end to end example that creates and deploy a container from source code.

    Resources

    https://github.com/dwyl/phoenix-liveview-counter-tutorial https://github.com/propedeutica/elixir-k8s-counter


    Use local/private LLM for semantic knowledge search by digitaltomm

    Description

    Use a local LLM, based on SUSE AI (ollama, openwebui) to power geeko search (public instance: https://geeko.port0.org/).

    Goals

    Build a SUSE internal instance of https://geeko.port0.org/ that can operate on internal resources, crawling confluence.suse.com, gitlab.suse.de, etc.

    Resources

    Repo: https://github.com/digitaltom/semantic-knowledge-search

    Public instance: https://geeko.port0.org/

    Results

    Internal instance:

    I have an internal test instance running which has indexed a couple of internal wiki pages from the SCC team. It's using the ollama (llama3.1:8b) backend of suse-ai.openplatform.suse.com to create embedding vectors for indexed resources and to create a chat response. The semantic search for documents is done with a vector search inside of sqlite, using sqlite-vec.

    image


    Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez

    Description

    Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.

    Goals

    • Explore Ollama
    • Test different models
    • Fine tuning
    • Explore possible integration in Uyuni

    Resources

    • https://ollama.com/
    • https://huggingface.co/
    • https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/


    COOTWbot by ngetahun

    Project Description

    At SCC, we have a rotating task of COOTW (Commanding Office of the Week). This task involves responding to customer requests from jira and slack help channels, monitoring production systems and doing small chores. Usually, we have documentation to help the COOTW answer questions and quickly find fixes. Most of these are distributed across github, trello and SUSE Support documentation. The aim of this project is to explore the magic of LLMs and create a conversational bot.

    Goal for this Hackweek

    • Build data ingestion Data source:
      • SUSE KB docs
      • scc github docs
      • scc trello knowledge board
    • Test out new RAG architecture

    • https://gitlab.suse.de/ngetahun/cootwbot


    AI for product management by a_jaeger

    Description

    Learn about AI and how it can help myself

    What are the jobs that a PM does where AI can help - and how?

    Goals

    • Investigate how AI can help with different tasks
    • Check out different AI tools, which one is best for which job
    • Summarize learning

    Resources

    • Reading some blog posts by PMs that looked into it
    • Popular and less popular AI tools

    Work is done SUSE internally at https://confluence.suse.com/display/~a_jaeger/Hackweek+25+-+AI+for+a+PM and subpages.


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    Automated Test Report reviewer by oscar-barrios

    Description

    In SUMA/Uyuni team we spend a lot of time reviewing test reports, analyzing each of the test cases failing, checking if the test is a flaky test, checking logs, etc.

    Goals

    Speed up the review by automating some parts through AI, in a way that we can consume some summary of that report that could be meaningful for the reviewer.

    Resources

    No idea about the resources yet, but we will make use of:

    • HTML/JSON Report (text + screenshots)
    • The Test Suite Status GithHub board (via API)
    • The environment tested (via SSH)
    • The test framework code (via files)


    Use local/private LLM for semantic knowledge search by digitaltomm

    Description

    Use a local LLM, based on SUSE AI (ollama, openwebui) to power geeko search (public instance: https://geeko.port0.org/).

    Goals

    Build a SUSE internal instance of https://geeko.port0.org/ that can operate on internal resources, crawling confluence.suse.com, gitlab.suse.de, etc.

    Resources

    Repo: https://github.com/digitaltom/semantic-knowledge-search

    Public instance: https://geeko.port0.org/

    Results

    Internal instance:

    I have an internal test instance running which has indexed a couple of internal wiki pages from the SCC team. It's using the ollama (llama3.1:8b) backend of suse-ai.openplatform.suse.com to create embedding vectors for indexed resources and to create a chat response. The semantic search for documents is done with a vector search inside of sqlite, using sqlite-vec.

    image