This is mostly a learning activity for myself, others may benefit from documentation.
Project Description
Practical setup of a k3s HA cluster
Goal for this Hackweek
Understand the concept, get the cluster up and running workloads. Create documentation that others can follow.
Resources
Use my workstation, or other available hardware. Probably utilize MicroOS.
Looking for hackers with the skills:
This project is part of:
Hack Week 22
Activity
Comments
Similar Projects
ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini
Description
ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration
and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal
or local installations. However, the goal is to expand its use to encompass all installations of
Kubernetes for local development purposes.
It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based
configuration config.yml
.
Overview
- Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
- Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
- Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
- Extensibility: Easily extend functionality with custom plugins and configurations.
- Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
- Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.
Features
- distribution and engine independence. Install your favorite kubernetes engine with your package
manager, execute one script and you'll have a complete working environment at your disposal.
- Basic config approach. One single
config.yml
file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...). - Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
- Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
- Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
- One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
- Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.
Planned features (Wishlist / TODOs)
- Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for
Integrate Backstage with Rancher Manager by nwmacd
Description
Backstage (backstage.io) is an open-source, CNCF project that allows you to create your own developer portal. There are many plugins for Backstage.
This could be a great compliment to Rancher Manager.
Goals
Learn and experiment with Backstage and look at how this could be integrated with Rancher Manager. Goal is to have some kind of integration completed in this Hack week.
Progress
Screen shot of home page at the end of Hackweek:
Day One
- Got Backstage running locally, understanding configuration with HTTPs.
- Got Backstage embedded in an IFRAME inside of Rancher
- Added content into the software catalog (see: https://backstage.io/docs/features/techdocs/getting-started/)
- Understood more about the entity model
Day Two
- Connected Backstage to the Rancher local cluster and configured the Kubernetes plugin.
- Created Rancher theme to make the light theme more consistent with Rancher
Days Three and Day Four
Created two backend plugins for Backstage:
- Catalog Entity Provider - this imports users from Rancher into Backstage
- Auth Provider - uses the proxied sign-in pattern to check the Rancher session cookie, to user that to authenticate the user with Rancher and then log them into Backstage by connecting this to the imported User entity from the catalog entity provider plugin.
With this in place, you can single-sign-on between Rancher and Backstage when it is deployed within Rancher. Note this is only when running locally for development at present
Day Five
- Start to build out a production deployment for all of the above
- Made some progress, but hit issues with the authentication and proxying when running proxied within Rancher, which needs further investigation
Learn enough Golang and hack on CoreDNS by jkuzilek
Description
I'm implementing a split-horizon DNS for my home Kubernetes cluster to be able to access my internal (and external) services over the local network through public domains. I managed to make a PoC with the k8s_gateway plugin for CoreDNS. However, I soon found out it responds with IPs for all Gateways assigned to HTTPRoutes, publishing public IPs as well as the internal Loadbalancer ones.
To remedy this issue, a simple filtering mechanism has to be implemented.
Goals
- Learn an acceptable amount of Golang
- Implement GatewayClass (and IngressClass) filtering for k8s_gateway
- Deploy on homelab cluster
- Profit?
Resources
- https://github.com/ori-edge/k8s_gateway/issues/36
- https://github.com/coredns/coredns/issues/2465#issuecomment-593910983
EDIT: Feature mostly complete. An unfinished PR lies here. Successfully tested working on homelab cluster.
ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini
Description
ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration
and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal
or local installations. However, the goal is to expand its use to encompass all installations of
Kubernetes for local development purposes.
It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based
configuration config.yml
.
Overview
- Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
- Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
- Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
- Extensibility: Easily extend functionality with custom plugins and configurations.
- Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
- Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.
Features
- distribution and engine independence. Install your favorite kubernetes engine with your package
manager, execute one script and you'll have a complete working environment at your disposal.
- Basic config approach. One single
config.yml
file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...). - Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
- Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
- Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
- One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
- Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.
Planned features (Wishlist / TODOs)
- Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
Multi-pod, autoscalable Elixir application in Kubernetes using K8s resources by socon
Description
Elixir / Erlang use their own solutions to create clusters that work together. Kubernetes provide its own orchestration. Due to the nature of the BEAM, it looks a very promising technology for applications that run in Kubernetes and requite to be always on, specifically if they are created as web pages using Phoenix.
Goals
- Investigate and provide solutions that work in Phoenix LiveView using Kubernetes resources, so a multi-pod application can be used
- Provide an end to end example that creates and deploy a container from source code.
Resources
https://github.com/dwyl/phoenix-liveview-counter-tutorial https://github.com/propedeutica/elixir-k8s-counter
ADS-B receiver with MicroOS by epaolantonio
I would like to put one of my spare Raspberry Pis to good use, and what better way to see what flies above my head at any time?
There are various ready-to-use distros already set-up to provide feeder data to platforms like Flightradar24, ADS-B Exchange, FlightAware etc... The goal here would be to do it using MicroOS as a base and containerized decoding of ADS-B data (via tools like dump1090
) and web frontend (tar1090
).
Goals
- Create a working receiver using MicroOS as a base, and containers based on Tumbleweed
- Make it easy to install
- Optimize for maximum laziness (i.e. it should take care of itself with minimum intervention)
Resources
- 1x Small Board Computer capable of running MicroOS
- 1x RTL2832U DVB-T dongle
- 1x MicroSD card
- https://github.com/antirez/dump1090
- https://github.com/flightaware/dump1090 (dump1090 fork by FlightAware)
- https://github.com/wiedehopf/tar1090
Project status (2024-11-22)
So I'd say that I'm pretty satisfied with how it turned out. I've packaged readsb
(as a replacement for dump1090
), tar1090
, tar1090-db
and mlat-client
(not used yet).
Current status:
- Able to set-up a working receiver using combustion+ignition (web app based on Fuel Ignition)
- Able to feed to various feeds using the Beast protocol (Airplanes.live, ADSB.fi, ADSB.lol, ADSBExchange.com, Flyitalyadsb.com, Planespotters.net)
- Able to feed to Flightradar24 (initial-setup available but NOT tested! I've only tested using a key I already had)
- Local web interface (tar1090) to easily visualize the results
- Cockpit pre-configured to ease maintenance
What's missing:
- MLAT (Multilateration) support. I've packaged mlat-client already, but I have to wire it up
- FlightAware support
Give it a go at https://g7.github.io/adsbreceiver/ !
Project links
- https://g7.github.io/adsbreceiver/
- https://github.com/g7/adsbreceiver
- https://build.opensuse.org/project/show/home:epaolantonio:adsbreceiver