Description

Implement a trentoctl CLI for interacting with a trento installation

Goals

  • learn rust
  • implement an initial trentoctl tool to enhance trento automation
  • have fun

Resources

trento rust. TUIs listed on this other hackweek project Hack on rich terminal user interfaces

Looking for hackers with the skills:

rust trento trentoctl cli tui

This project is part of:

Hack Week 24

Activity

  • about 1 year ago: nkopliku added keyword "rust" to this project.
  • about 1 year ago: nkopliku added keyword "trento" to this project.
  • about 1 year ago: nkopliku added keyword "trentoctl" to this project.
  • about 1 year ago: nkopliku added keyword "cli" to this project.
  • about 1 year ago: nkopliku added keyword "tui" to this project.
  • about 1 year ago: nkopliku started this project.
  • about 1 year ago: nkopliku originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Build a terminal user-interface (TUI) for Agama by IGonzalezSosa

    Description

    Officially, Agama offers two different user interfaces. On the one hand, we have the web-based interface, which is the one you see when you run the installation media. On the other hand, we have a command-line interface. In both cases, you can use them using a remote system, either using a browser or the agama CLI.

    We would expect most of the cases to be covered by this approach. However, if you cannot use the web-based interface and, for some reason, you cannot access the system through the network, your only option is to use the CLI. This interface offers a mechanism to modify Agama's configuration using an editor (vim, by default), but perhaps you might want to have a more user-friendly way.

    Goals

    The main goal of this project is to built a minimal terminal user-interface for Agama. This interface will allow the user to install the system providing just a few settings (selecting a product, a storage device and a user password). Then it should report the installation progress.

    Resources

    • https://agama-project.github.io/
    • https://ratatui.rs/

    Conclusions

    We have summarized our conclusions in a pull request. It includes screenshots ;-) We did not implement all the features we wanted, but we learn a lot during the process. We know that, if needed, we could write a TUI for Agama and we have an idea about how to build it. Good enough.


    Learn how to use the Relm4 Rust GUI crate by xiaoguang_wang

    Relm4 is based on gtk4-rs and compatible with libadwaita. The gtk4-rs crate provides all the tools necessary to develop applications. Building on this foundation, Relm4 makes developing more idiomatic, simpler, and faster.

    https://github.com/Relm4/Relm4


    Learn a bit of embedded programming with Rust in a micro:bit v2 by aplanas

    Description

    micro:bit is a small single board computer with a ARM Cortex-M4 with the FPU extension, with a very constrain amount of memory and a bunch of sensors and leds.

    The board is very well documented, with schematics and code for all the features available, so is an excellent platform for learning embedded programming.

    Rust is a system programming language that can generate ARM code, and has crates (libraries) to access the micro:bit hardware. There is plenty documentation about how to make small programs that will run in the micro:bit.

    Goals

    Start learning about embedded programming in Rust, and maybe make some code to the small KS4036F Robot car from keyestudio.

    Resources

    Diary

    Day 1

    • Start reading https://mb2.implrust.com/abstraction-layers.html
    • Prepare the dev environment (cross compiler, probe-rs)
    • Flash first code in the board (blinky led)
    • Checking differences between BSP and HAL
    • Compile and install a more complex example, with stack protection
    • Reading about the simplicity of xtask, as alias for workspace execution
    • Reading the CPP code of the official micro:bit libraries. They have a font!

    Day 2

    • There are multiple BSP for the microbit. One is using async code for non-blocking operations
    • Download and study a bit the API for microbit-v2, the nRF official crate
    • Take a look of the KS4036F programming, seems that the communication is multiplexed via I2C
    • The motor speed can be selected via PWM (pulse with modulation): power it longer (high frequency), and it will increase the speed
    • Scrolling some text
    • Debug by printing! defmt is a crate that can be used with probe-rs to emit logs
    • Start reading input from the board: buttons
    • The logo can be touched and detected as a floating point value

    Day 3

    • A bit confused how to read the float value from a pin


    Looking at Rust if it could be an interesting programming language by jsmeix

    Get some basic understanding of Rust security related features from a general point of view.

    This Hack Week project is not to learn Rust to become a Rust programmer. This might happen later but it is not the goal of this Hack Week project.

    The goal of this Hack Week project is to evaluate if Rust could be an interesting programming language.

    An interesting programming language must make it easier to write code that is correct and stays correct when over time others maintain and enhance it than the opposite.


    Arcticwolf - A rust based user space NFS server by vcheng

    Description

    Rust has similar performance to C. Also, have a better async IO module and high integration with io_uring. This project aims to develop a user-space NFS server based on Rust.

    Goals

    • Get an understanding of how cargo works
    • Get an understanding of how XDR was generated with xdrgen
    • Create the RUST-based NFS server that supports basic operations like mount/readdir/read/write

    Result (2025 Hackweek)

    • In progress PR: https://github.com/Vicente-Cheng/arcticwolf/pull/1

    Resources

    https://github.com/Vicente-Cheng/arcticwolf


    Rewrite Distrobox in go (POC) by fabriziosestito

    Description

    Rewriting Distrobox in Go.

    Main benefits:

    • Easier to maintain and to test
    • Adapter pattern for different container backends (LXC, systemd-nspawn, etc.)

    Goals

    • Build a minimal starting point with core commands
    • Keep the CLI interface compatible: existing users shouldn't notice any difference
    • Use a clean Go architecture with adapters for different container backends
    • Keep dependencies minimal and binary size small
    • Benchmark against the original shell script

    Resources

    • Upstream project: https://github.com/89luca89/distrobox/
    • Distrobox site: https://distrobox.it/
    • ArchWiki: https://wiki.archlinux.org/title/Distrobox


    A CLI for Harvester by mohamed.belgaied

    Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI. Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.

    Project Description

    Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as: harvester vm create my-vm --count 5 to create 5 VMs named my-vm-01 to my-vm-05.

    asciicast

    Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.

    Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli

    Done in previous Hackweeks

    • Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
    • Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE

    Goal for this Hackweek

    The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.

    Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it

    Issue list is here: https://github.com/belgaied2/harvester-cli/issues

    Resources

    The project is written in Go, and using client-go the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact). Welcome contributions are:

    • Testing it and creating issues
    • Documentation
    • Go code improvement

    What you might learn

    Harvester CLI might be interesting to you if you want to learn more about:

    • GitHub Actions
    • Harvester as a SUSE Product
    • Go programming language
    • Kubernetes API
    • Kubevirt API objects (Manipulating VMs and VM Configuration in Kubernetes using Kubevirt)