Description

Sched_ext upstream has some interesting issues open for grabs:

Goals

Send patches to sched_ext upstream

Also set up perfetto to trace some of the example schedulers.

Resources

https://github.com/sched-ext/scx

Looking for hackers with the skills:

rust kernel

This project is part of:

Hack Week 24

Activity

  • about 1 year ago: fgiudici liked this project.
  • about 1 year ago: flonnegren added keyword "kernel" to this project.
  • about 1 year ago: flonnegren added keyword "rust" to this project.
  • about 1 year ago: flonnegren started this project.
  • about 1 year ago: flonnegren originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Looking at Rust if it could be an interesting programming language by jsmeix

    Get some basic understanding of Rust security related features from a general point of view.

    This Hack Week project is not to learn Rust to become a Rust programmer. This might happen later but it is not the goal of this Hack Week project.

    The goal of this Hack Week project is to evaluate if Rust could be an interesting programming language.

    An interesting programming language must make it easier to write code that is correct and stays correct when over time others maintain and enhance it than the opposite.


    Arcticwolf - A rust based user space NFS server by vcheng

    Description

    Rust has similar performance to C. Also, have a better async IO module and high integration with io_uring. This project aims to develop a user-space NFS server based on Rust.

    Goals

    • Get an understanding of how cargo works
    • Get an understanding of how XDR was generated with xdrgen
    • Create the RUST-based NFS server that supports basic operations like mount/readdir/read/write

    Result (2025 Hackweek)

    • In progress PR: https://github.com/Vicente-Cheng/arcticwolf/pull/1

    Resources

    https://github.com/Vicente-Cheng/arcticwolf


    AI-Powered Unit Test Automation for Agama by joseivanlopez

    The Agama project is a multi-language Linux installer that leverages the distinct strengths of several key technologies:

    • Rust: Used for the back-end services and the core HTTP API, providing performance and safety.
    • TypeScript (React/PatternFly): Powers the modern web user interface (UI), ensuring a consistent and responsive user experience.
    • Ruby: Integrates existing, robust YaST libraries (e.g., yast-storage-ng) to reuse established functionality.

    The Problem: Testing Overhead

    Developing and maintaining code across these three languages requires a significant, tedious effort in writing, reviewing, and updating unit tests for each component. This high cost of testing is a drain on developer resources and can slow down the project's evolution.

    The Solution: AI-Driven Automation

    This project aims to eliminate the manual overhead of unit testing by exploring and integrating AI-driven code generation tools. We will investigate how AI can:

    1. Automatically generate new unit tests as code is developed.
    2. Intelligently correct and update existing unit tests when the application code changes.

    By automating this crucial but monotonous task, we can free developers to focus on feature implementation and significantly improve the speed and maintainability of the Agama codebase.

    Goals

    • Proof of Concept: Successfully integrate and demonstrate an authorized AI tool (e.g., gemini-cli) to automatically generate unit tests.
    • Workflow Integration: Define and document a new unit test automation workflow that seamlessly integrates the selected AI tool into the existing Agama development pipeline.
    • Knowledge Sharing: Establish a set of best practices for using AI in code generation, sharing the learned expertise with the broader team.

    Contribution & Resources

    We are seeking contributors interested in AI-powered development and improving developer efficiency. Whether you have previous experience with code generation tools or are eager to learn, your participation is highly valuable.

    If you want to dive deep into AI for software quality, please reach out and join the effort!

    • Authorized AI Tools: Tools supported by SUSE (e.g., gemini-cli)
    • Focus Areas: Rust, TypeScript, and Ruby components within the Agama project.

    Interesting Links


    OpenPlatform Self-Service Portal by tmuntan1

    Description

    In SUSE IT, we developed an internal developer platform for our engineers using SUSE technologies such as RKE2, SUSE Virtualization, and Rancher. While it works well for our existing users, the onboarding process could be better.

    To improve our customer experience, I would like to build a self-service portal to make it easy for people to accomplish common actions. To get started, I would have the portal create Jira SD tickets for our customers to have better information in our tickets, but eventually I want to add automation to reduce our workload.

    Goals

    • Build a frontend website (Angular) that helps customers create Jira SD tickets.
    • Build a backend (Rust with Axum) for the backend, which would do all the hard work for the frontend.

    Resources (SUSE VPN only)

    • development site: https://ui-dev.openplatform.suse.com/login?returnUrl=%2Fopenplatform%2Fforms
    • https://gitlab.suse.de/itpe/core/open-platform/op-portal/backend
    • https://gitlab.suse.de/itpe/core/open-platform/op-portal/frontend


    RMT.rs: High-Performance Registration Path for RMT using Rust by gbasso

    Description

    The SUSE Repository Mirroring Tool (RMT) is a critical component for managing software updates and subscriptions, especially for our Public Cloud Team (PCT). In a cloud environment, hundreds or even thousands of new SUSE instances (VPS/EC2) can be provisioned simultaneously. Each new instance attempts to register against an RMT server, creating a "thundering herd" scenario.

    We have observed that the current RMT server, written in Ruby, faces performance issues under this high-concurrency registration load. This can lead to request overhead, slow registration times, and outright registration failures, delaying the readiness of new cloud instances.

    This Hackweek project aims to explore a solution by re-implementing the performance-critical registration path in Rust. The goal is to leverage Rust's high performance, memory safety, and first-class concurrency handling to create an alternative registration endpoint that is fast, reliable, and can gracefully manage massive, simultaneous request spikes.

    The new Rust module will be integrated into the existing RMT Ruby application, allowing us to directly compare the performance of both implementations.

    Goals

    The primary objective is to build and benchmark a high-performance Rust-based alternative for the RMT server registration endpoint.

    Key goals for the week:

    1. Analyze & Identify: Dive into the SUSE/rmt Ruby codebase to identify and map out the exact critical path for server registration (e.g., controllers, services, database interactions).
    2. Develop in Rust: Implement a functionally equivalent version of this registration logic in Rust.
    3. Integrate: Explore and implement a method for Ruby/Rust integration to "hot-wire" the new Rust module into the RMT application. This may involve using FFI, or libraries like rb-sys or magnus.
    4. Benchmark: Create a benchmarking script (e.g., using k6, ab, or a custom tool) that simulates the high-concurrency registration load from thousands of clients.
    5. Compare & Present: Conduct a comparative performance analysis (requests per second, latency, success/error rates, CPU/memory usage) between the original Ruby path and the new Rust path. The deliverable will be this data and a summary of the findings.

    Resources

    • RMT Source Code (Ruby):
      • https://github.com/SUSE/rmt
    • RMT Documentation:
      • https://documentation.suse.com/sles/15-SP7/html/SLES-all/book-rmt.html
    • Tooling & Stacks:
      • RMT/Ruby development environment (for running the base RMT)
      • Rust development environment (rustup, cargo)
    • Potential Integration Libraries:
      • rb-sys: https://github.com/oxidize-rb/rb-sys
      • Magnus: https://github.com/matsadler/magnus
    • Benchmarking Tools:
      • k6 (https://k6.io/)
      • ab (ApacheBench)


    dynticks-testing: analyse perf / trace-cmd output and aggregate data by m.crivellari

    Description

    dynticks-testing is a project started years ago by Frederic Weisbecker. One of the feature is to check the actual configuration (isolcpus, irqaffinity etc etc) and give feedback on it.

    An important goal of this tool is to parse the output of trace-cmd / perf and provide more readable data, showing the duration of every events grouped by PID (showing also the CPU number, if the tasks has been migrated etc).

    An example of data captured on my laptop (incomplete!!):

              -0     [005] dN.2. 20310.270699: sched_wakeup:         WaylandProxy:46380 [120] CPU:005
              -0     [005] d..2. 20310.270702: sched_switch:         swapper/5:0 [120] R ==> WaylandProxy:46380 [120]
    ...
        WaylandProxy-46380 [004] d..2. 20310.295397: sched_switch:         WaylandProxy:46380 [120] S ==> swapper/4:0 [120]
              -0     [006] d..2. 20310.295397: sched_switch:         swapper/6:0 [120] R ==> firefox:46373 [120]
             firefox-46373 [006] d..2. 20310.295408: sched_switch:         firefox:46373 [120] S ==> swapper/6:0 [120]
              -0     [004] dN.2. 20310.295466: sched_wakeup:         WaylandProxy:46380 [120] CPU:004
    

    Output of noise_parse.py:

    Task: WaylandProxy Pid: 46380 cpus: {4, 5} (Migrated!!!)
            Wakeup Latency                                Nr:        24     Duration:          89
            Sched switch: kworker/12:2                    Nr:         1     Duration:           6
    

    My first contribution is around Nov. 2024!

    Goals

    • add more features (eg cpuset)
    • test / bugfix

    Resources

    Progresses

    isolcpus and cpusets implemented and merged in master: dynticks-testing.git commit


    pudc - A PID 1 process that barks to the internet by mssola

    Description

    As a fun exercise in order to dig deeper into the Linux kernel, its interfaces, the RISC-V architecture, and all the dragons in between; I'm building a blog site cooked like this:

    • The backend is written in a mixture of C and RISC-V assembly.
    • The backend is actually PID1 (for real, not within a container).
    • We poll and parse incoming HTTP requests ourselves.
    • The frontend is a mere HTML page with htmx.

    The project is meant to be Linux-specific, so I'm going to use io_uring, pidfs, namespaces, and Linux-specific features in order to drive all of this.

    I'm open for suggestions and so on, but this is meant to be a solo project, as this is more of a learning exercise for me than anything else.

    Goals

    • Have a better understanding of different Linux features from user space down to the kernel internals.
    • Most importantly: have fun.

    Resources


    Add Qualcomm Snapdragon 765G (SM7250) basic device tree to mainline linux kernel by pvorel

    Qualcomm Snapdragon 765G (SM7250) (smartphone SoC) has no support in the linux kernel, nor in u-boot. Try to add basic device tree support. The hardest part will be to create boot.img which will be accepted by phone.

    UART is available for smartphone :).


    Backporting patches using LLM by jankara

    Description

    Backporting Linux kernel fixes (either for CVE issues or as part of general git-fixes workflow) is boring and mostly mechanical work (dealing with changes in context, renamed variables, new helper functions etc.). The idea of this project is to explore usage of LLM for backporting Linux kernel commits to SUSE kernels using LLM.

    Goals

    • Create safe environment allowing LLM to run and backport patches without exposing the whole filesystem to it (for privacy and security reasons).
    • Write prompt that will guide LLM through the backporting process. Fine tune it based on experimental results.
    • Explore success rate of LLMs when backporting various patches.

    Resources

    • Docker
    • Gemini CLI

    Repository

    Current version of the container with some instructions for use are at: https://gitlab.suse.de/jankara/gemini-cli-backporter


    early stage kdump support by mbrugger

    Project Description

    When we experience a early boot crash, we are not able to analyze the kernel dump, as user-space wasn't able to load the crash system. The idea is to make the crash system compiled into the host kernel (think of initramfs) so that we can create a kernel dump really early in the boot process.

    Goal for the Hackweeks

    1. Investigate if this is possible and the implications it would have (done in HW21)
    2. Hack up a PoC (done in HW22 and HW23)
    3. Prepare RFC series (giving it's only one week, we are entering wishful thinking territory here).

    update HW23

    • I was able to include the crash kernel into the kernel Image.
    • I'll need to find a way to load that from init/main.c:start_kernel() probably after kcsan_init()
    • I workaround for a smoke test was to hack kexec_file_load() systemcall which has two problems:
      1. My initramfs in the porduction kernel does not have a new enough kexec version, that's not a blocker but where the week ended
      2. As the crash kernel is part of init.data it will be already stale once I can call kexec_file_load() from user-space.

    The solution is probably to rewrite the POC so that the invocation can be done from init.text (that's my theory) but I'm not sure if I can reuse the kexec infrastructure in the kernel from there, which I rely on heavily.

    update HW24

    • Day1
      • rebased on v6.12 with no problems others then me breaking the config
      • setting up a new compilation and qemu/virtme env
      • getting desperate as nothing works that used to work
    • Day 2
      • getting to call the invocation of loading the early kernel from __init after kcsan_init()
    • Day 3

      • fix problem of memdup not being able to alloc so much memory... use 64K page sizes for now
      • code refactoring
      • I'm now able to load the crash kernel
      • When using virtme I can boot into the crash kernel, also it doesn't boot completely (major milestone!), crash in elfcorehdr_read_notes()
    • Day 4

      • crash systems crashes (no pun intended) in copy_old_mempage() link; will need to understand elfcorehdr...
      • call path vmcore_init() -> parse_crash_elf_headers() -> elfcorehdr_read() -> read_from_oldmem() -> copy_oldmem_page() -> copy_to_iter()
    • Day 5

      • hacking arch/arm64/kernel/crash_dump.c:copy_old_mempage() to see if crash system really starts. It does.
      • fun fact: retested with more reserved memory and with UEFI FW, host kernel crashes in init but directly starts the crash kernel, so it works (somehow) \o/

    update HW25

    • Day 1
      • rebased crash-kernel on v6.12.59 (for now), still crashing