Description
Sched_ext upstream has some interesting issues open for grabs:
Goals
Send patches to sched_ext upstream
Also set up perfetto to trace some of the example schedulers.
Resources
https://github.com/sched-ext/scx
This project is part of:
Hack Week 24
Activity
Comments
Be the first to comment!
Similar Projects
Grapesss: a physical Shamir's Secret Sharing application [ESP32-C3 + Mobile] by ecandino
Description
A couple of years ago I created StegoSecretS, a small cli used to encrypt and split a secret into multiple keys, using the Shamir's Secret Sharing algorithm.
The idea is to re-implement the project using physical devices. One device alone will be useless, but when close together they can be used to decrypt the secret.
On a practical side the user encrypts the secret with a mobile application. The same application is used to split the secret, and load the partial keys into different micro-controllers. Another user will be able to decrypt the secret only having at least N devices close together (using the application).
I'm planning to use a couple of ESP32-C3 I bought, and build a very simple Android mobile application.
Goals
- Learn about Rust and micro-controllers (ESP32-C3)
- Learn about mobile applications (Android and Kotlin)
Resources
SMB3 Server written entirely in Rust by dmulder
Description
Given the number of bugs frequently discovered in the Samba code caused by memory issues, it makes sense to re-write the smbd service purely in Rust code. Meanwhile, it would be wise to abandon backwards compatibility here with insecure protocol versions, and simply implement the SMB3 spec.
Goals
Get a simple server up and running and get it merged into upstream Samba (which now has Rust build support).
Resources
Write an url shortener in Rust (And learn in the way) by szarate
So I have 469.icu :), it's currently doing nothing... (and for sale) but in the meantime, I'd like to write an url shortener from scratch and deploy it on my own server
https://github.com/foursixnine/url-manager-rs/tree/main
Hack on isotest-ng - a rust port of isotovideo (os-autoinst aka testrunner of openQA) by szarate
Description
Some time ago, I managed to convince ByteOtter to hack something that resembles isotovideo but in Rust, not because I believe that Perl is dead, but more because there are certain limitations in the perl code (how it was written), and its always hard to add new functionalities when they are about implementing a new backend, or fixing bugs (Along with people complaining that Perl is dead, and that they don't like it)
In reality, I wanted to see if this could be done, and ByteOtter proved that it could be, while doing an amazing job at hacking a vnc console, and helping me understand better what RuPerl needs to work.
I plan to keep working on this for the next few years, and while I don't aim for feature completion or replacing isotovideo tih isotest-ng (name in progress), I do plan to be able to use it on a daily basis, using specialized tooling with interfaces, instead of reimplementing everything in the backend
Todo
- Add
make
targets for testability, e.g "spawn qemu and type" - Add image search matching algorithm
- Add a Null test distribution provider
- Add a Perl Test Distribution Provider
- Fix unittests https://github.com/os-autoinst/isotest-ng/issues/5
- Research OpenTofu how to add new hypervisors/baremetal to OpenTofu
- Add an interface to openQA cli
Goals
- Implement at least one of the above, prepare proposals for GSoC
- Boot a system via it's BMC
Resources
See https://github.com/os-autoinst/isotest-ng
Kanidm: A safe and modern IDM system by firstyear
Kanidm is an IDM system written in Rust for modern systems authentication. The github repo has a detailed "getting started" on the readme.
In addition Kanidm has spawn a number of adjacent projects in the Rust ecosystem such as LDAP, Kerberos, Webauthn, and cryptography libraries.
In this hack week, we'll be working on Quokca, a certificate authority that supports PKCS11/TPM storage of keys, issuance of PIV certificates, and ACME without the feature gatekeeping implemented by other CA's like smallstep.
For anyone who wants to participate in Kanidm, we have documentation and developer guides which can help.
I'm happy to help and share more, so please get in touch!
Linux on Cavium CN23XX cards by tsbogend
Before Cavium switched to ARM64 CPUs they developed quite powerful MIPS based SOCs. The current upstream Linux kernel already supports some Octeon SOCs, but not the latest versions. Goal of this Hack Week project is to use the latest Cavium SDK to update the Linux kernel code to let it running on CN23XX network cards.
Improve various phones kernel mainline support (Qualcomm, Exynos, MediaTek) by pvorel
Similar to previous hackweeks ( https://hackweek.opensuse.org/projects/improve-qualcomm-soc-msm8994-slash-msm8992-kernel-mainline-support, https://hackweek.opensuse.org/projects/test-mainline-kernel-on-an-older-qualcomm-soc-msm89xx-explore-mainline-kernel-qualcomm-mainlining) try to improve kernel mainline support of various phones.
Contributing to Linux Kernel security by pperego
Description
A couple of weeks ago, I found this blog post by Gustavo Silva, a Linux Kernel contributor.
I always strived to start again into hacking the Linux Kernel, so I asked Coverity scan dashboard access and I want to contribute to Linux Kernel by fixing some minor issues.
I want also to create a Linux Kernel fuzzing lab using qemu and syzkaller
Goals
- Fix at least 2 security bugs
- Create the fuzzing lab and having it running
The story so far
- Day 1: setting up a virtual machine for kernel development using Tumbleweed. Reading a lot of documentation, taking confidence with Coverity dashboard and with procedures to submit a kernel patch
- Day 2: I read really a lot of documentation and I triaged some findings on Coverity SAST dashboard. I have to confirm that SAST tool are great false positives generator, even for low hanging fruits.
- Day 3: Working on trivial changes after I read this blog post:
https://www.toblux.com/posts/2024/02/linux-kernel-patches.html. I have to take confidence
with the patch preparation and submit process yet.
- First trivial patch sent: using strtruefalse() macro instead of hard-coded strings in a staging driver for a lcd display
- Fix for a dereference before null check issue discovered by Coverity (CID 1601566) https://scan7.scan.coverity.com/#/project-view/52110/11354?selectedIssue=1601566
- Day 4: Triaging more issues found by Coverity.
- The patch for CID 1601566 was refused. The check against the NULL pointer was pointless so I prepared a version 2 of the patch removing the check.
- Fixed another dereference before NULL check in iwlmvmparsewowlaninfo_notif() routine (CID 1601547). This one was already submitted by another kernel hacker :(
- Day 5: Wrapping up. I had to do some minor rework on patch for CID 1601566. I found a stalker bothering me in private emails and people I interacted with me, advised he is a well known bothering person. Markus Elfring for the record.
Wrapping up: being back doing kernel hacking is amazing and I don't want to stop it. My battery pack is completely drained but changing the scope gave me a great twist and I really want to feel this energy not doing a single task for months.
I failed in setting up a fuzzing lab but I was too optimistic for the patch submission process.
The patches
Kill DMA and DMA32 memory zones by ptesarik
Description
Provide a better allocator for DMA-capable buffers, making the DMA and DMA32 zones obsolete.
Goals
Make a PoC kernel which can boot a x86 VM and a Raspberry Pi (because early RPi4 boards have some of the weirdest DMA constraints).
Resources
- LPC2024 talk:
- video:
early stage kdump support by mbrugger
Project Description
When we experience a early boot crash, we are not able to analyze the kernel dump, as user-space wasn't able to load the crash system. The idea is to make the crash system compiled into the host kernel (think of initramfs) so that we can create a kernel dump really early in the boot process.
Goal for the Hackweeks
- Investigate if this is possible and the implications it would have (done in HW21)
- Hack up a PoC (done in HW22 and HW23)
- Prepare RFC series (giving it's only one week, we are entering wishful thinking territory here).
update HW23
- I was able to include the crash kernel into the kernel Image.
- I'll need to find a way to load that from
init/main.c:start_kernel()
probably afterkcsan_init()
- I workaround for a smoke test was to hack
kexec_file_load()
systemcall which has two problems:- My initramfs in the porduction kernel does not have a new enough kexec version, that's not a blocker but where the week ended
- As the crash kernel is part of init.data it will be already stale once I can call
kexec_file_load()
from user-space.
The solution is probably to rewrite the POC so that the invocation can be done from init.text (that's my theory) but I'm not sure if I can reuse the kexec infrastructure in the kernel from there, which I rely on heavily.
update HW24
- Day1
- rebased on v6.12 with no problems others then me breaking the config
- setting up a new compilation and qemu/virtme env
- getting desperate as nothing works that used to work
- Day 2
- getting to call the invocation of loading the early kernel from
__init
afterkcsan_init()
- getting to call the invocation of loading the early kernel from
Day 3
- fix problem of memdup not being able to alloc so much memory... use 64K page sizes for now
- code refactoring
- I'm now able to load the crash kernel
- When using virtme I can boot into the crash kernel, also it doesn't boot completely (major milestone!), crash in
elfcorehdr_read_notes()
Day 4
- crash systems crashes (no pun intended) in
copy_old_mempage()
link; will need to understand elfcorehdr... - call path
vmcore_init() -> parse_crash_elf_headers() -> elfcorehdr_read() -> read_from_oldmem() -> copy_oldmem_page() -> copy_to_iter()
- crash systems crashes (no pun intended) in
Day 5
- hacking
arch/arm64/kernel/crash_dump.c:copy_old_mempage()
to see if crash system really starts. It does. - fun fact: retested with more reserved memory and with UEFI FW, host kernel crashes in init but directly starts the crash kernel, so it works (somehow) \o/
- hacking
TODOs
- fix elfcorehdr so that we actually can make use of all this...
- test where in the boot
__init()
chain we can/should callkexec_early_dump()