Description

This project is meant to fight the loneliness of the support team members, providing them an AI assistant (hopefully) capable of scraping supportconfigs in a RAG fashion, trying to answer specific questions.

Goals

  • Setup an Ollama backend, spinning one (or more??) code-focused LLMs selected by license, performance and quality of the results between:
  • Setup a Web UI for it, choosing an easily extensible and customizable option between:
  • Extend the solution in order to be able to:
    • Add ZIU/Concord shared folders to its RAG context
    • Add BZ cases, splitted in comments to its RAG context
      • A plus would be to login using the IDP portal to ghostwrAIter itself and use the same credentials to query BZ
    • Add specific packages picking them from IBS repos
      • A plus would be to login using the IDP portal to ghostwrAIter itself and use the same credentials to query IBS
      • A plus would be to desume the packages of interest and the right channel and version to be picked from the added BZ cases

Looking for hackers with the skills:

ai support

This project is part of:

Hack Week 24

Activity

  • about 1 year ago: paolodepa started this project.
  • about 1 year ago: m.crivellari liked this project.
  • about 1 year ago: HvdHeuvel liked this project.
  • about 1 year ago: livdywan liked this project.
  • about 1 year ago: lthadeus liked this project.
  • over 1 year ago: paolodepa added keyword "support" to this project.
  • over 1 year ago: paolodepa added keyword "ai" to this project.
  • over 1 year ago: paolodepa originated this project.

  • Comments

    • paolodepa
      about 1 year ago by paolodepa | Reply

      The project soon moved to CLI, as the skills for integrating a WEB-UI are not my cup of tea :-/
      Its description and source code can be found at ghostwrAIter

      I tested the listed LLMs and also the following embedding models: mxbai-embed-large, nomic-embed-text, all-minilm.
      My impression is that the current state of the art for the really open-source llms and embedding models is not still mature and ready for production grade and that a big gap exists with the most well-known commercial product.

      Hopefully will run a refresh for the next hackweek.

    Similar Projects

    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources

    Outcome


    Extended private brain - RAG my own scripts and data into offline LLM AI by tjyrinki_suse

    Description

    For purely studying purposes, I'd like to find out if I could teach an LLM some of my own accumulated knowledge, to use it as a sort of extended brain.

    I might use qwen3-coder or something similar as a starting point.

    Everything would be done 100% offline without network available to the container, since I prefer to see when network is needed, and make it so it's never needed (other than initial downloads).

    Goals

    1. Learn something about RAG, LLM, AI.
    2. Find out if everything works offline as intended.
    3. As an end result have a new way to access my own existing know-how, but so that I can query the wisdom in them.
    4. Be flexible to pivot in any direction, as long as there are new things learned.

    Resources

    To be found on the fly.

    Timeline

    Day 1 (of 4)

    • Tried out a RAG demo, expanded on feeding it my own data
    • Experimented with qwen3-coder to add a persistent chat functionality, and keeping vectors in a pickle file
    • Optimizations to keep everything within context window
    • Learn and add a bit of PyTest

    Day 2

    • More experimenting and more data
    • Study ChromaDB
    • Add a Web UI that works from another computer even though the container sees network is down

    Day 3

    • The above RAG is working well enough for demonstration purposes.
    • Pivot to trying out OpenCode, configuring local Ollama qwen3-coder there, to analyze the RAG demo.
    • Figured out how to configure Ollama template to be usable under OpenCode. OpenCode locally is super slow to just running qwen3-coder alone.

    Day 4 (final day)

    • Battle with OpenCode that was both slow and kept on piling up broken things.
    • Call it success as after all the agentic AI was working locally.
    • Clean up the mess left behind a bit.

    Blog Post

    Summarized the findings at blog post.


    Uyuni Health-check Grafana AI Troubleshooter by ygutierrez

    Description

    This project explores the feasibility of using the open-source Grafana LLM plugin to enhance the Uyuni Health-check tool with LLM capabilities. The idea is to integrate a chat-based "AI Troubleshooter" directly into existing dashboards, allowing users to ask natural-language questions about errors, anomalies, or performance issues.

    Goals

    • Investigate if and how the grafana-llm-app plug-in can be used within the Uyuni Health-check tool.
    • Investigate if this plug-in can be used to query LLMs for troubleshooting scenarios.
    • Evaluate support for local LLMs and external APIs through the plugin.
    • Evaluate if and how the Uyuni MCP server could be integrated as another source of information.

    Resources

    Grafana LMM plug-in

    Uyuni Health-check


    Exploring Modern AI Trends and Kubernetes-Based AI Infrastructure by jluo

    Description

    Build a solid understanding of the current landscape of Artificial Intelligence and how modern cloud-native technologies—especially Kubernetes—support AI workloads.

    Goals

    Use Gemini Learning Mode to guide the exploration, surface relevant concepts, and structure the learning journey:

    • Gain insight into the latest AI trends, tools, and architectural concepts.
    • Understand how Kubernetes and related cloud-native technologies are used in the AI ecosystem (model training, deployment, orchestration, MLOps).

    Resources

    • Red Hat AI Topic Articles

      • https://www.redhat.com/en/topics/ai
    • Kubeflow Documentation

      • https://www.kubeflow.org/docs/
    • Q4 2025 CNCF Technology Landscape Radar report:

      • https://www.cncf.io/announcements/2025/11/11/cncf-and-slashdata-report-finds-leading-ai-tools-gaining-adoption-in-cloud-native-ecosystems/
      • https://www.cncf.io/wp-content/uploads/2025/11/cncfreporttechradar_111025a.pdf
    • Agent-to-Agent (A2A) Protocol

      • https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/


    SUSE Edge Image Builder MCP by eminguez

    Description

    Based on my other hackweek project, SUSE Edge Image Builder's Json Schema I would like to build also a MCP to be able to generate EIB config files the AI way.

    Realistically I don't think I'll be able to have something consumable at the end of this hackweek but at least I would like to start exploring MCPs, the difference between an API and MCP, etc.

    Goals

    • Familiarize myself with MCPs
    • Unrealistic: Have an MCP that can generate an EIB config file

    Resources

    Result

    https://github.com/e-minguez/eib-mcp

    I've extensively used antigravity and its agent mode to code this. This heavily uses https://hackweek.opensuse.org/25/projects/suse-edge-image-builder-json-schema for the MCP to be built.

    I've ended up learning a lot of things about "prompting", json schemas in general, some golang, MCPs and AI in general :)

    Example:

    Generate an Edge Image Builder configuration for an ISO image based on slmicro-6.2.iso, targeting x86_64 architecture. The output name should be 'my-edge-image' and it should install to /dev/sda. It should deploy a 3 nodes kubernetes cluster with nodes names "node1", "node2" and "node3" as: * hostname: node1, IP: 1.1.1.1, role: initializer * hostname: node2, IP: 1.1.1.2, role: agent * hostname: node3, IP: 1.1.1.3, role: agent The kubernetes version should be k3s 1.33.4-k3s1 and it should deploy a cert-manager helm chart (the latest one available according to https://cert-manager.io/docs/installation/helm/). It should create a user called "suse" with password "suse" and set ntp to "foo.ntp.org". The VIP address for the API should be 1.2.3.4

    Generates:

    ``` apiVersion: "1.0" image: arch: x86_64 baseImage: slmicro-6.2.iso imageType: iso outputImageName: my-edge-image kubernetes: helm: charts: - name: cert-manager repositoryName: jetstack