Project Description

This project aims to write a minimal Gameboy emulator using Go programming language.

Goal for this Hackweek

The goals is to implement a minimal PPU (Pixel Processing Unit) using Go and it's bindings for SDL2. CPU is already implemented although it would need a little more testing.

If possible, another goal would be to meet engineers interested in the project and collaborate together add-emoji

Resources

The Github repo where all the code is -> https://github.com/mikeletux/goboy

Looking for hackers with the skills:

golang sdl unit-testing cpu emulator

This project is part of:

Hack Week 23

Activity

  • 12 months ago: atgracey liked this project.
  • over 1 year ago: jgoldschmidt liked this project.
  • over 1 year ago: mikeletux disliked this project.
  • over 1 year ago: mikeletux liked this project.
  • over 1 year ago: ptashima liked this project.
  • over 1 year ago: bfilho liked this project.
  • over 1 year ago: juliogonzalezgil liked this project.
  • over 1 year ago: mikeletux started this project.
  • over 1 year ago: mikeletux liked this project.
  • over 1 year ago: mikeletux added keyword "golang" to this project.
  • over 1 year ago: mikeletux added keyword "sdl" to this project.
  • over 1 year ago: mikeletux added keyword "unit-testing" to this project.
  • over 1 year ago: mikeletux added keyword "cpu" to this project.
  • over 1 year ago: mikeletux added keyword "emulator" to this project.
  • over 1 year ago: mikeletux originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Contribute to terraform-provider-libvirt by pinvernizzi

    Description

    The SUSE Manager (SUMA) teams' main tool for infrastructure automation, Sumaform, largely relies on terraform-provider-libvirt. That provider is also widely used by other teams, both inside and outside SUSE.

    It would be good to help the maintainers of this project and give back to the community around it, after all the amazing work that has been already done.

    If you're interested in any of infrastructure automation, Terraform, virtualization, tooling development, Go (...) it is also a good chance to learn a bit about them all by putting your hands on an interesting, real-use-case and complex project.

    Goals

    • Get more familiar with Terraform provider development and libvirt bindings in Go
    • Solve some issues and/or implement some features
    • Get in touch with the community around the project

    Resources


    iSCSI integration in Warewulf by ncuralli

    Description

    This Hackweek project aims to enhance Warewulf’s capabilities by adding iSCSI support, enabling both remote boot and flexible mounting of iSCSI devices within the filesystem. The project, which already handles NFS, DHCP, and iPXE, will be extended to offer iSCSI services as well, centralizing all necessary services for provisioning and booting cluster nodes.

    Goals

    • iSCSI Boot Option: Enable nodes to boot directly from iSCSI volumes
    • Mounting iSCSI Volumes within the Filesystem: Implement support for mounting iSCSI devices at various points within the filesystem

    Resources

    https://warewulf.org/

    Steps

    • add generic framework to handle remote ressource/filesystems to wwctl [ ]
    • add iSCSI handling to wwctl configure [ ]
    • add iSCSI to dracut files [ ]
    • test it [ ]


    Harvester Packer Plugin by mrohrich

    Description

    Hashicorp Packer is an automation tool that allows automatic customized VM image builds - assuming the user has a virtualization tool at their disposal. To make use of Harvester as such a virtualization tool a plugin for Packer needs to be written. With this plugin users could make use of their Harvester cluster to build customized VM images, something they likely want to do if they have a Harvester cluster.

    Goals

    Write a Packer plugin bridging the gap between Harvester and Packer. Users should be able to create customized VM images using Packer and Harvester with no need to utilize another virtualization platform.

    Resources

    Hashicorp documentation for building custom plugins for Packer https://developer.hashicorp.com/packer/docs/plugins/creation/custom-builders

    Source repository of the Harvester Packer plugin https://github.com/m-ildefons/harvester-packer-plugin


    A CLI for Harvester by mohamed.belgaied

    [comment]: # Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI [comment]: # Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. [comment]: # Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.

    Project Description

    Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as: harvester vm create my-vm --count 5 to create 5 VMs named my-vm-01 to my-vm-05.

    asciicast

    Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.

    Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli

    Done in previous Hackweeks

    • Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
    • Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE

    Goal for this Hackweek

    The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.

    Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it

    Issue list is here: https://github.com/belgaied2/harvester-cli/issues

    Resources

    The project is written in Go, and using client-go the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact). Welcome contributions are:

    • Testing it and creating issues
    • Documentation
    • Go code improvement

    What you might learn

    Harvester CLI might be interesting to you if you want to learn more about:

    • GitHub Actions
    • Harvester as a SUSE Product
    • Go programming language
    • Kubernetes API


    file-organizer: A CLI Tool for Efficient File Management by okhatavkar

    Description

    Create a Go-based CLI tool that helps organize files in a specified folder by sorting them into subdirectories based on defined criteria, such as file type or creation date. Users will pass a folder path as an argument, and the tool will process and organize the files within it.

    Goals

    • Develop Go skills by building a practical command-line application.
    • Learn to manage and manipulate files and directories in Go using standard libraries.
    • Create a tool that simplifies file management, making it easier to organize and maintain directories.

    Resources

    • Go Standard Libraries: Utilize os, filepath, and time for file operations.
    • CLI Development: Use flag for basic argument parsing or consider cobra for enhanced functionality.
    • Go Learning Material: Go by Example and The Go Programming Language Documentation.

    Features

    • File Type Sorting: Automatically move files into subdirectories based on their extensions (e.g., documents, images, videos).
    • Date-Based Organization: Add an option to organize files by creation date into year/month folders.
    • User-Friendly CLI: Build intuitive commands and clear outputs for ease of use. This version maintains the core idea of organizing files efficiently while focusing on Go development and practical file management.


    Port some classic game to Linux by MDoucha

    Let's pick some old classic game, reverse engineer the data formats and game rules and write an open source engine for it from scratch. Some games from 1990s are simple enough that we could have a playable prototype by the end of the week.

    Write which games you'd like to hack on in the comments. Don't forget to check e.g. on Open Source Game Clones, Github and SourceForge whether the game is ported already.

    Hack Week 24 - Master of Orion II: Battle at Antares & Chaos Overlords

    Work on Master of Orion II continues but we can hack more than one game. Chaos Overlords is a dystopian, lighthearted, cyberpunk turn-based strategy game originally released in 1996 for Windows 95 and Mac OS. The player takes on the role of a Chaos Overlord, attempting to control a city. Gameplay involves hiring mercenary gangs and deploying them on an 8-by-8 grid of city sectors to generate income, occupy sectors and take over the city.

    How to ~~install & play~~ observe the decompilation progress:

    • Clone the Git repository
    • A playable reimplementation does not exist yet, but when it does, it will be linked in the repository mentioned above.

    Further work needed:

    • Analyze the remaining unknown data structures, most of which are related to the AI.
    • Decompile the AI completely. The strong AI is part of the appeal of the game. It cannot be left out.
    • Reimplement the game.

    Hack Week 20, 21, 22 & 23 - Master of Orion II: Battle at Antares

    Master of Orion II is one of the greatest turn-based 4X games of the 1990s. Explore the galaxy, colonize planets, research new technologies, fight space monsters and alien empires and in the end, become the ruler of the galaxy one way or another.

    How to install & play:

    • Clone the Git repository
    • Run ./bootstrap; ./configure; make && make install
    • Copy all *.LBX files from the original Master of Orion II to the installation data directory (/usr/local/share/openorion2 by default)
    • Run openorion2

    Further work needed:

    • Analyze the rest of the original savegame format and a few remaining data files.
    • Implement most of the game. The open source engine currently supports only loading saved games from the original version and viewing the galaxy map, fleet management and list of known planets.

    Hack Week 19 - Signus: The Artifact Wars

    Signus is a Czech turn-based strategy game similar to Panzer General or Battle Isle series. Originally published in 1998 and open-sourced by the original developers in 2003.

    How to install & play:

    • Clone the Git repository
    • Run ./bootstrap; ./configure; make && make install in both signus and signus-data directories.
    • Run signus

    Further work needed:

    • Create openSUSE package
    • Implement full support for original game data (the open source version uses slightly different data file contents but original game data can be converted using a script).


    ESETv2 Emulator / interpreter by m.crivellari

    Description

    ESETv2 is an intriguing challenge developed by ESET, available on their website under the "Challenge" menu. The challenge involves an "assembly-like" language and a Python compiler that generates .evm binary files.

    This is an example using one of their samples (it prints N Fibonacci numbers):

    .dataSize 0
    .code
    
    loadConst 0, r1 # first
    loadConst 1, r2 # second
    
    loadConst 1, r14 # loop helper
    
    consoleRead r3
    
    loop:
        jumpEqual end, r3, r15
    
        add r1, r2, r4
        mov r2, r1
        mov r4, r2
    
        consoleWrite r1
    
        sub r3, r14, r3
        jump loop
    end:
    hlt
    

    This language also supports multi-threading. It includes instructions such as createThread to start a new thread, joinThread to wait until a thread completes, and lock/unlock to facilitate synchronization between threads.

    Goals

    • create a full interpreter able to run all the available samples provided by ESET.
    • improve / optimize memory (eg. using bitfields where needed as well as avoid unnecessary memory allocations)

    Resources

    Achivements

    Project still not complete. Added lock / unlock instruction implementation but further debug is needed; there is a bug somewhere. Actually the code it works for almost all the examples in the samples folder. 1 of them is not yet runnable (due to a missing "write" opcode implementation), another will cause the bug to show up; still not investigated, anyhow.