Project Description
Currently, the Elemental Operator authenticates the hosts registering for Elemental provisioning via TPM attestation. In particular, the host will perform both Enrollment and Attestation in the same round on the very first registration. Further connections to update the host state will be possible only if the host will be able to proof its identity via TPM (the Enrollment previously done will be used to perform Attestation against the host).
The only available unsupported option to allow nodes without TPM to be provisioned via the Elemental Operator is to use TPM emulation: that would use keys derived by a (random) number to simulate TPM operations and perform attestation (see https://github.com/rancher/elemental-operator/issues/235) .
There are a number of reasons to avoid using random-derived-key TPM emulation in Elemental Operator:
- security is not comparable to the one of a real TPM device: in particular we just allow to derive all TPM keys from one single number, and anyone with the same number will be able to impersonate the host (see https://github.com/rancher-sandbox/go-tpm/issues/6)
- in order to allow the host to update its own data (labels) the random number should be derived by a host unique identifier (UID), in order to let the host re-identify itself, making the whole Attestation useless
Viable alternatives include:
- plain identification (no authentication): just use a host UID for identification, no authentication. This will allow to skip Attestation, providing almost equal security to the one of the current emulated TPM with key derived by a host UID.
- split identification and authentication: identify with some UID from the host and authenticate generating a random key/password, to be stored in the host permanent storage. This could allow a security level between no auth and TPM based Attestation.
- fix random generation of the emulated TPM key (https://github.com/rancher-sandbox/go-tpm/issues/6), generate a new truly random TPM simulator and save its state in the host permanent storage before performing Enrollment and Attestation.
Goal for this Hackweek
The overall goal is to review current authentication methods during registration and explore new ones.
The focus for this Hackweek is to extend the Elemental Operator to allow multiple identification/authentication methods: the target MVP is to allow registration via the alternative 1. (identification and no authentication).
Resources
Looking for hackers with the skills:
This project is part of:
Hack Week 22
Activity
Comments
-
almost 3 years ago by fgiudici | Reply
Feb 3, end of the hackweek:
We have a PR introducing a plain identification way to "authenticate" against the elemental-operator, as described at point 1. above.
Instead of a UUID, since we have got report that SMBIOS information can be empty on some hw vendors, we used the MAC address of the "main" network interface as the unique identifier to use during registration (that should really be unique... otherwise, well, you will have bigger issues than registering
)The "main" network interface is actually the first network interface found in the system with a hw address and an IP address assigned there. Good enough for this PoC, since we expect the ifindex net interface to be lower for phisical nics, so they should be checked before any virtual interface.
Some value in the work was to generalize the authentication code, especially on the client side (using Golang interfaces).
Talk is cheap. Show me the code.
here it is: https://github.com/rancher/elemental-operator/pull/345
-
Similar Projects
go-git: unlocking SHA256-based repository cloning ahead of git v3 by pgomes
Description
The go-git library implements the git internals in pure Go, so that any Go application can handle not only Git repositories, but also lower-level primitives (e.g. packfiles, idxfiles, etc) without needing to shell out to the git binary.
The focus for this Hackweek is to fast track key improvements for the project ahead of the upstream release of Git V3, which may take place at some point next year.
Goals
- Add support for cloning SHA256 repositories.
- Decrease memory churn for very large repositories (e.g. Linux Kernel repository).
- Cut the first alpha version for
go-git/v6.
Stretch goals
- Review and update the official documentation.
- Optimise use of go-git in Fleet.
- Create RFC/example for go-git plugins to improve extensibility.
- Investigate performance bottlenecks for Blame and Status.
Resources
- https://github.com/go-git/go-git/
- https://go-git.github.io/docs/
terraform-provider-feilong by e_bischoff
Project Description
People need to test operating systems and applications on s390 platform. While this is straightforward with KVM, this is very difficult with z/VM.
IBM Cloud Infrastructure Center (ICIC) harnesses the Feilong API, but you can use Feilong without installing ICIC(see this schema).
What about writing a terraform Feilong provider, just like we have the terraform libvirt provider? That would allow to transparently call Feilong from your main.tf files to deploy and destroy resources on your z/VM system.
Goal for Hackweek 23
I would like to be able to easily deploy and provision VMs automatically on a z/VM system, in a way that people might enjoy even outside of SUSE.
My technical preference is to write a terraform provider plugin, as it is the approach that involves the least software components for our deployments, while remaining clean, and compatible with our existing development infrastructure.
Goals for Hackweek 24
Feilong provider works and is used internally by SUSE Manager team. Let's push it forward!
Let's add support for fiberchannel disks and multipath.
Goals for Hackweek 25
Modernization, maturity, and maintenance: support for SLES 16 and openTofu, new API calls, fixes...
Resources
Outcome
Create a Cloud-Native policy engine with notifying capabilities to optimize resource usage by gbazzotti
Description
The goal of this project is to begin the initial phase of development of an all-in-one Cloud-Native Policy Engine that notifies resource owners when their resources infringe predetermined policies. This was inspired by a current issue in the CES-SRE Team where other solutions seemed to not exactly correspond to the needs of the specific workloads running on the Public Cloud Team space.
The initial architecture can be checked out on the Repository listed under Resources.
Among the features that will differ this project from other monitoring/notification systems:
- Pre-defined sensible policies written at the software-level, avoiding a learning curve by requiring users to write their own policies
- All-in-one functionality: logging, mailing and all other actions are not required to install any additional plugins/packages
- Easy account management, being able to parse all required configuration by a single JSON file
- Eliminate integrations by not requiring metrics to go through a data-agreggator
Goals
- Create a minimal working prototype following the workflow specified on the documentation
- Provide instructions on installation/usage
- Work on email notifying capabilities
Resources
Create a go module to wrap happy-compta.fr by cbosdonnat
Description
https://happy-compta.fr is a tool for french work councils simple book keeping. While it does the job, it has no API to work with and it is tedious to enter loads of operations.
Goals
Write a go client module to be used as an API to programmatically manipulate the tool.
Writing an example tool to load data from a CSV file would be good too.
SUSE Health Check Tools by roseswe
SUSE HC Tools Overview
A collection of tools written in Bash or Go 1.24++ to make life easier with handling of a bunch of tar.xz balls created by supportconfig.
Background: For SUSE HC we receive a bunch of supportconfig tar balls to check them for misconfiguration, areas for improvement or future changes.
Main focus on these HC are High Availability (pacemaker), SLES itself and SAP workloads, esp. around the SUSE best practices.
Goals
- Overall improvement of the tools
- Adding new collectors
- Add support for SLES16
Resources
csv2xls* example.sh go.mod listprodids.txt sumtext* trails.go README.md csv2xls.go exceltest.go go.sum m.sh* sumtext.go vercheck.py* config.ini csvfiles/ getrpm* listprodids* rpmdate.sh* sumxls* verdriver* credtest.go example.py getrpm.go listprodids.go sccfixer.sh* sumxls.go verdriver.go
docollall.sh* extracthtml.go gethostnamectl* go.sum numastat.go cpuvul* extractcluster.go firmwarebug* gethostnamectl.go m.sh* numastattest.go cpuvul.go extracthtml* firmwarebug.go go.mod numastat* xtr_cib.sh*
$ getrpm -r pacemaker
>> Product ID: 2795 (SUSE Linux Enterprise Server for SAP Applications 15 SP7 x86_64), RPM Name:
+--------------+----------------------------+--------+--------------+--------------------+
| Package Name | Version | Arch | Release | Repository |
+--------------+----------------------------+--------+--------------+--------------------+
| pacemaker | 2.1.10+20250718.fdf796ebc8 | x86_64 | 150700.3.3.1 | sle-ha/15.7/x86_64 |
| pacemaker | 2.1.9+20250410.471584e6a2 | x86_64 | 150700.1.9 | sle-ha/15.7/x86_64 |
+--------------+----------------------------+--------+--------------+--------------------+
Total packages found: 2