Description

In SUMA/Uyuni team we spend a lot of time reviewing test reports, analyzing each of the test cases failing, checking if the test is a flaky test, checking logs, etc.

Goals

Speed up the review by automating some parts through AI, in a way that we can consume some summary of that report that could be meaningful for the reviewer.

Resources

No idea about the resources yet, but we will make use of:

  • HTML/JSON Report (text + screenshots)
  • The Test Suite Status GithHub board (via API)
  • The environment tested (via SSH)
  • The test framework code (via files)

Looking for hackers with the skills:

uyuni ai reports testing

This project is part of:

Hack Week 24

Activity

  • about 1 year ago: juliogonzalezgil liked this project.
  • about 1 year ago: livdywan liked this project.
  • about 1 year ago: oscar-barrios added keyword "uyuni" to this project.
  • about 1 year ago: oscar-barrios added keyword "ai" to this project.
  • about 1 year ago: oscar-barrios added keyword "reports" to this project.
  • about 1 year ago: oscar-barrios added keyword "testing" to this project.
  • about 1 year ago: oscar-barrios originated this project.

  • Comments

    • oscar-barrios
    • oscar-barrios
      2 months ago by oscar-barrios | Reply

      I end up continuing this project on my free time, and I made some progress here: https://github.com/srbarrios/FailTale

    Similar Projects

    Enable more features in mcp-server-uyuni by j_renner

    Description

    I would like to contribute to mcp-server-uyuni, the MCP server for Uyuni / Multi-Linux Manager) exposing additional features as tools. There is lots of relevant features to be found throughout the API, for example:

    • System operations and infos
    • System groups
    • Maintenance windows
    • Ansible
    • Reporting
    • ...

    At the end of the week I managed to enable basic system group operations:

    • List all system groups visible to the user
    • Create new system groups
    • List systems assigned to a group
    • Add and remove systems from groups

    Goals

    • Set up test environment locally with the MCP server and client + a recent MLM server [DONE]
    • Identify features and use cases offering a benefit with limited effort required for enablement [DONE]
    • Create a PR to the repo [DONE]

    Resources


    Uyuni Saltboot rework by oholecek

    Description

    When Uyuni switched over to the containerized proxies we had to abandon salt based saltboot infrastructure we had before. Uyuni already had integration with a Cobbler provisioning server and saltboot infra was re-implemented on top of this Cobbler integration.

    What was not obvious from the start was that Cobbler, having all it's features, woefully slow when dealing with saltboot size environments. We did some improvements in performance, introduced transactions, and generally tried to make this setup usable. However the underlying slowness remained.

    Goals

    This project is not something trying to invent new things, it is just finally implementing saltboot infrastructure directly with the Uyuni server core.

    Instead of generating grub and pxelinux configurations by Cobbler for all thousands of systems and branches, we will provide a GET access point to retrieve grub or pxelinux file during the boot:

    /saltboot/group/grub/$fqdn and similar for systems /saltboot/system/grub/$mac

    Next we adapt our tftpd translator to query these points when asked for default or mac based config.

    Lastly similar thing needs to be done on our apache server when HTTP UEFI boot is used.

    Resources


    mgr-ansible-ssh - Intelligent, Lightweight CLI for Distributed Remote Execution by deve5h

    Description

    By the end of Hack Week, the target will be to deliver a minimal functional version 1 (MVP) of a custom command-line tool named mgr-ansible-ssh (a unified wrapper for BOTH ad-hoc shell & playbooks) that allows operators to:

    1. Execute arbitrary shell commands on thousand of remote machines simultaneously using Ansible Runner with artifacts saved locally.
    2. Pass runtime options such as inventory file, remote command string/ playbook execution, parallel forks, limits, dry-run mode, or no-std-ansible-output.
    3. Leverage existing SSH trust relationships without additional setup.
    4. Provide a clean, intuitive CLI interface with --help for ease of use. It should provide consistent UX & CI-friendly interface.
    5. Establish a foundation that can later be extended with advanced features such as logging, grouping, interactive shell mode, safe-command checks, and parallel execution tuning.

    The MVP should enable day-to-day operations to efficiently target thousands of machines with a single, consistent interface.

    Goals

    Primary Goals (MVP):

    Build a functional CLI tool (mgr-ansible-ssh) capable of executing shell commands on multiple remote hosts using Ansible Runner. Test the tool across a large distributed environment (1000+ machines) to validate its performance and reliability.

    Looking forward to significantly reducing the zypper deployment time across all 351 RMT VM servers in our MLM cluster by eliminating the dependency on the taskomatic service, bringing execution down to a fraction of the current duration. The tool should also support multiple runtime flags, such as:

    mgr-ansible-ssh: Remote command execution wrapper using Ansible Runner
    
    Usage: mgr-ansible-ssh [--help] [--version] [--inventory INVENTORY]
                       [--run RUN] [--playbook PLAYBOOK] [--limit LIMIT]
                       [--forks FORKS] [--dry-run] [--no-ansible-output]
    
    Required Arguments
    --inventory, -i      Path to Ansible inventory file to use
    
    Any One of the Arguments Is Required
    --run, -r            Execute the specified shell command on target hosts
    --playbook, -p       Execute the specified Ansible playbook on target hosts
    
    Optional Arguments
    --help, -h           Show the help message and exit
    --version, -v        Show the version and exit
    --limit, -l          Limit execution to specific hosts or groups
    --forks, -f          Number of parallel Ansible forks
    --dry-run            Run in Ansible check mode (requires -p or --playbook)
    --no-ansible-output  Suppress Ansible stdout output
    

    Secondary/Stretched Goals (if time permits):

    1. Add pretty output formatting (success/failure summary per host).
    2. Implement basic logging of executed commands and results.
    3. Introduce safety checks for risky commands (shutdown, rm -rf, etc.).
    4. Package the tool so it can be installed with pip or stored internally.

    Resources

    Collaboration is welcome from anyone interested in CLI tooling, automation, or distributed systems. Skills that would be particularly valuable include:

    1. Python especially around CLI dev (argparse, click, rich)


    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources

    Outcome


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt (including bootstrapping with bootstrap script) and Salt-ssh clients

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    In progress/done for Hack Week 25

    Guide

    We started writin a Guide: Adding a new client GNU Linux distribution to Uyuni at https://github.com/uyuni-project/uyuni/wiki/Guide:-Adding-a-new-client-GNU-Linux-distribution-to-Uyuni, to make things easier for everyone, specially those not too familiar wht Uyuni or not technical.

    openSUSE Leap 16.0

    The distribution will all love!

    https://en.opensuse.org/openSUSE:Roadmap#DRAFTScheduleforLeap16.0

    Curent Status We started last year, it's complete now for Hack Week 25! :-D

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file) NOTE: Done, client tools for SLMicro6 are using as those for SLE16.0/openSUSE Leap 16.0 are not available yet
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [W] Package management (install, remove, update...). Works, even reboot requirement detection


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    MCP Server for SCC by digitaltomm

    Description

    Provide an MCP Server implementation for customers to access data on scc.suse.com via MCP protocol. The core benefit of this MCP interface is that it has direct (read) access to customer data in SCC, so the AI agent gets enhanced knowledge about individual customer data, like subscriptions, orders and registered systems.

    Architecture

    Schema

    Goals

    We want to demonstrate a proof of concept to connect to the SCC MCP server with any AI agent, for example gemini-cli or codex. Enabling the user to ask questions regarding their SCC inventory.

    For this Hackweek, we target that users get proper responses to these example questions:

    • Which of my currently active systems are running products that are out of support?
    • Do I have ready to use registration codes for SLES?
    • What are the latest 5 released patches for SLES 15 SP6? Output as a list with release date, patch name, affected package names and fixed CVEs.
    • Which versions of kernel-default are available on SLES 15 SP6?

    Technical Notes

    Similar to the organization APIs, this can expose to customers data about their subscriptions, orders, systems and products. Authentication should be done by organization credentials, similar to what needs to be provided to RMT/MLM. Customers can connect to the SCC MCP server from their own MCP-compatible client and Large Language Model (LLM), so no third party is involved.

    Milestones

    [x] Basic MCP API setup
      MCP endpoints
      [x] Products / Repositories
      [x] Subscriptions / Orders 
      [x] Systems
      [x] Packages
    [x] Document usage with Gemini CLI, Codex
    

    Resources

    Gemini CLI setup:

    ~/.gemini/settings.json:


    issuefs: FUSE filesystem representing issues (e.g. JIRA) for the use with AI agents code-assistants by llansky3

    Description

    Creating a FUSE filesystem (issuefs) that mounts issues from various ticketing systems (Github, Jira, Bugzilla, Redmine) as files to your local file system.

    And why this is good idea?

    • User can use favorite command line tools to view and search the tickets from various sources
    • User can use AI agents capabilities from your favorite IDE or cli to ask question about the issues, project or functionality while providing relevant tickets as context without extra work.
    • User can use it during development of the new features when you let the AI agent to jump start the solution. The issuefs will give the AI agent the context (AI agents just read few more files) about the bug or requested features. No need for copying and pasting issues to user prompt or by using extra MCP tools to access the issues. These you can still do but this approach is on purpose different.

    Goals

    1. Add Github issue support
    2. Proof the concept/approach by apply the approach on itself using Github issues for tracking and development of new features
    3. Add support for Bugzilla and Redmine using this approach in the process of doing it. Record a video of it.
    4. Clean-up and test the implementation and create some documentation
    5. Create a blog post about this approach

    Resources

    There is a prototype implementation here. This currently sort of works with JIRA only.


    Try AI training with ROCm and LoRA by bmwiedemann

    Description

    I want to setup a Radeon RX 9600 XT 16 GB at home with ROCm on Slowroll.

    Goals

    I want to test how fast AI inference can get with the GPU and if I can use LoRA to re-train an existing free model for some task.

    Resources

    • https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html
    • https://build.opensuse.org/project/show/science:GPU:ROCm
    • https://src.opensuse.org/ROCm/
    • https://www.suse.com/c/lora-fine-tuning-llms-for-text-classification/

    Results

    got inference working with llama.cpp:

    export LLAMACPP_ROCM_ARCH=gfx1200
    HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
    cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$LLAMACPP_ROCM_ARCH \
    -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
    -Dhipblas_DIR=/usr/lib64/cmake/hipblaslt/ \
    && cmake --build build --config Release -j8
    m=models/gpt-oss-20b-mxfp4.gguf
    cd $P/llama.cpp && build/bin/llama-server --model $m --threads 8 --port 8005 --host 0.0.0.0 --device ROCm0 --n-gpu-layers 999
    

    Without the --device option it faulted. Maybe because my APU also appears there?

    I updated/fixed various related packages: https://src.opensuse.org/ROCm/rocm-examples/pulls/1 https://src.opensuse.org/ROCm/hipblaslt/pulls/1 SR 1320959

    benchmark

    I benchmarked inference with llama.cpp + gpt-oss-20b-mxfp4.gguf and ROCm offloading to a Radeon RX 9060 XT 16GB. I varied the number of layers that went to the GPU:

    • 0 layers 14.49 tokens/s (8 CPU cores)
    • 9 layers 17.79 tokens/s 34% VRAM
    • 15 layers 22.39 tokens/s 51% VRAM
    • 20 layers 27.49 tokens/s 64% VRAM
    • 24 layers 41.18 tokens/s 74% VRAM
    • 25+ layers 86.63 tokens/s 75% VRAM (only 200% CPU load)

    So there is a significant performance-boost if the whole model fits into the GPU's VRAM.


    Bugzilla goes AI - Phase 1 by nwalter

    Description

    This project, Bugzilla goes AI, aims to boost developer productivity by creating an autonomous AI bug agent during Hackweek. The primary goal is to reduce the time employees spend triaging bugs by integrating Ollama to summarize issues, recommend next steps, and push focused daily reports to a Web Interface.

    Goals

    To reduce employee time spent on Bugzilla by implementing an AI tool that triages and summarizes bug reports, providing actionable recommendations to the team via Web Interface.

    Project Charter

    Bugzilla goes AI Phase 1

    Description

    Project Achievements during Hackweek

    In this file you can read about what we achieved during Hackweek.

    Project Achievements


    Multimachine on-prem test with opentofu, ansible and Robot Framework by apappas

    Description

    A long time ago I explored using the Robot Framework for testing. A big deficiency over our openQA setup is that bringing up and configuring the connection to a test machine is out of scope.

    Nowadays we have a way¹ to deploy SUTs outside openqa, but we only use if for cloud tests in conjuction with openqa. Using knowledge gained from that project I am going to try to create a test scenario that replicates an openqa test but this time including the deployment and setup of the SUT.

    Goals

    Create a simple multimachine test scenario with the support server and SUT all created by the robot framework.

    Resources

    1. https://github.com/SUSE/qe-sap-deployment
    2. terraform-libvirt-provider


    openQA tests needles elaboration using AI image recognition by mdati

    Description

    In the openQA test framework, to identify the status of a target SUT image, a screenshots of GUI or CLI-terminal images, the needles framework scans the many pictures in its repository, having associated a given set of tags (strings), selecting specific smaller parts of each available image. For the needles management actually we need to keep stored many screenshots, variants of GUI and CLI-terminal images, eachone accompanied by a dedicated set of data references (json).

    A smarter framework, using image recognition based on AI or other image elaborations tools, nowadays widely available, could improve the matching process and hopefully reduce time and errors, during the images verification and detection process.

    Goals

    Main scope of this idea is to match a "graphical" image of the console or GUI status of a running openQA test, an image of a shell console or application-GUI screenshot, using less time and resources and with less errors in data preparation and use, than the actual openQA needles framework; that is:

    • having a given SUT (system under test) GUI or CLI-terminal screenshot, with a local distribution of pixels or text commands related to a running test status,
    • we want to identify a desired target, e.g. a screen image status or data/commands context,
      • based on AI/ML-pretrained archives containing object or other proper elaboration tools,
      • possibly able to identify also object not present in the archive, i.e. by means of AI/ML mechanisms.
    • the matching result should be then adapted to continue working in the openQA test, likewise and in place of the same result that would have been produced by the original openQA needles framework.
    • We expect an improvement of the matching-time(less time), reliability of the expected result(less error) and simplification of archive maintenance in adding/removing objects(smaller DB and less actions).

    Hackweek POC:

    Main steps

    • Phase 1 - Plan
      • study the available tools
      • prepare a plan for the process to build
    • Phase 2 - Implement
      • write and build a draft application
    • Phase 3 - Data
      • prepare the data archive from a subset of needles
      • initialize/pre-train the base archive
      • select a screenshot from the subset, removing/changing some part
    • Phase 4 - Test
      • run the POC application
      • expect the image type is identified in a good %.

    Resources

    First step of this project is quite identification of useful resources for the scope; some possibilities are:

    • SUSE AI and other ML tools (i.e. Tensorflow)
    • Tools able to manage images
    • RPA test tools (like i.e. Robot framework)
    • other.

    Project references


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt (including bootstrapping with bootstrap script) and Salt-ssh clients

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    In progress/done for Hack Week 25

    Guide

    We started writin a Guide: Adding a new client GNU Linux distribution to Uyuni at https://github.com/uyuni-project/uyuni/wiki/Guide:-Adding-a-new-client-GNU-Linux-distribution-to-Uyuni, to make things easier for everyone, specially those not too familiar wht Uyuni or not technical.

    openSUSE Leap 16.0

    The distribution will all love!

    https://en.opensuse.org/openSUSE:Roadmap#DRAFTScheduleforLeap16.0

    Curent Status We started last year, it's complete now for Hack Week 25! :-D

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file) NOTE: Done, client tools for SLMicro6 are using as those for SLE16.0/openSUSE Leap 16.0 are not available yet
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [W] Package management (install, remove, update...). Works, even reboot requirement detection