Description
In SUMA/Uyuni team we spend a lot of time reviewing test reports, analyzing each of the test cases failing, checking if the test is a flaky test, checking logs, etc.
Goals
Speed up the review by automating some parts through AI, in a way that we can consume some summary of that report that could be meaningful for the reviewer.
Resources
No idea about the resources yet, but we will make use of:
- HTML/JSON Report (text + screenshots)
- The Test Suite Status GithHub board (via API)
- The environment tested (via SSH)
- The test framework code (via files)
No Hackers yet
This project is part of:
Hack Week 24
Activity
Comments
Similar Projects
Enable the containerized Uyuni server to run on different host OS by j_renner
Description
The Uyuni server is provided as a container, but we still require it to run on Leap Micro? This is not how people expect to use containerized applications, so it would be great if we tested other host OSs and enabled them by providing builds of necessary tools for (e.g. mgradm). Interesting candidates should be:
- openSUSE Leap
- Cent OS 7
- Ubuntu
- ???
Goals
Make it really easy for anyone to run the Uyuni containerized server on whatever OS they want (with support for containers of course).
Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez
Description
Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.
Goals
- Explore Ollama
- Test different models
- Fine tuning
- Explore possible integration in Uyuni
Resources
- https://ollama.com/
- https://huggingface.co/
- https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/
Create SUSE Manager users from ldap/ad groups by mbrookhuis
Description
This tool is used to create users in SUSE Manager Server based on LDAP/AD groups. For each LDAP/AD group a role within SUSE Manager Server is defined. Also, the tool will check if existing users still have the role they should have, and, if not, it will be corrected. The same for if a user is disabled, it will be enabled again. If a users is not present in the LDAP/AD groups anymore, it will be disabled or deleted, depending on the configuration.
The code is written for Python 3.6 (the default with SLES15.x), but will also work with newer versions. And works against SUSE Manger 4.3 and 5.x
Goals
Create a python and/or golang utility that will manage users in SUSE Manager based on LDAP/AD group-membership. In a configuration file is defined which roles the members of a group will get.
Table of contents
Installation
To install this project, perform the following steps:
- Be sure that python 3.6 is installed and also the module python3-PyYAML. Also the ldap3 module is needed:
bash
zypper in python3 python3-PyYAML
pip install yaml
On the server or PC, where it should run, create a directory. On linux, e.g. /opt/sm-ldap-users
Copy all the file to this directory.
Edit the configsm.yaml. All parameters should be entered. Tip: for the ldap information, the best would be to use the same as for SSSD.
Be sure that the file sm-ldap-users.py is executable. It would be good to change the owner to root:root and only root can read and execute:
bash
chmod 600 *
chmod 700 sm-ldap-users.py
chown root:root *
Usage
This is very simple. Once the configsm.yaml contains the correct information, executing the following will do the magic:
bash
/sm-ldap-users.py
repository link
https://github.com/mbrookhuis/sm-ldap-users
Edge Image Builder and mkosi for Uyuni by oholecek
Description
One part of Uyuni system management tool is ability to build custom images. Currently Uyuni supports only Kiwi image builder.
Kiwi however is not the only image building system out there and with the goal to also become familiar with other systems, this projects aim to add support for Edge Image builder and systemd's mkosi systems.
Goals
Uyuni is able to
- provision EIB and mkosi build hosts
- build EIB and mkosi images and store them
Resources
- Uyuni - https://github.com/uyuni-project/uyuni
- Edge Image builder - https://github.com/suse-edge/edge-image-builder
- mkosi - https://github.com/systemd/mkosi
Improve Development Environment on Uyuni by mbussolotto
Description
Currently create a dev environment on Uyuni might be complicated. The steps are:
- add the correct repo
- download packages
- configure your IDE (checkstyle, format rules, sonarlint....)
- setup debug environment
- ...
The current doc can be improved: some information are hard to be find out, some others are completely missing.
Dev Container might solve this situation.
Goals
Uyuni development in no time:
- using VSCode:
- setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
- dev container should contains all dependencies
- setup debug environment
- implement a GitHub Workspace solution
- re-write documentation
Lots of pieces are already implemented: we need to connect them in a consistent solution.
Resources
- https://github.com/uyuni-project/uyuni/wiki
Gen-AI chatbots and test-automation of generated responses by mdati
Description
Start experimenting the generative SUSE-AI chat bot, asking questions on different areas of knowledge or science and possibly analyze the quality of the LLM model response, specific and comparative, checking the answers provided by different LLM models to a same query, using proper quality metrics or tools or methodologies.
Try to define basic guidelines and requirements for quality test automation of AI-generated responses.
First approach of investigation can be based on manual testing: methodologies, findings and data can be useful then to organize valid automated testing.
Goals
- Identify criteria and measuring scales for assessment of a text content.
- Define quality of an answer/text based on defined criteria .
- Identify some knowledge sectors and a proper list of problems/questions per sector.
- Manually run query session and apply evaluation criteria to answers.
- Draft requirements for test automation of AI answers.
Resources
- Announcement of SUSE-AI for Hack Week in Slack
- Openplatform and related 3 LLM models gemma:2b, llama3.1:8b, qwen2.5-coder:3b.
Notes
Foundation models (FMs):
are large deep learning neural networks, trained on massive datasets, that have changed the way data scientists approach machine learning (ML). Rather than develop artificial intelligence (AI) from scratch, data scientists use a foundation model as a starting point to develop ML models that power new applications more quickly and cost-effectively.Large language models (LLMs):
are a category of foundation models pre-trained on immense amounts of data acquiring abilities by learning statistical relationships from vast amounts of text during a self- and semi-supervised training process, making them capable of understanding and generating natural language and other types of content , to perform a wide range of tasks.
LLMs can be used for generative AI (artificial intelligence) to produce content based on input prompts in human language.
Validation of a AI-generated answer is not an easy task to perform, as manually as automated.
An LLM answer text shall contain a given level of informations: correcness, completeness, reasoning description etc.
We shall rely in properly applicable and measurable criteria of validation to get an assessment in a limited amount of time and resources.
Learn how to integrate Elixir and Phoenix Liveview with LLMs by ninopaparo
Description
Learn how to integrate Elixir and Phoenix Liveview with LLMs by building an application that can provide answers to user queries based on a corpus of custom-trained data.
Goals
Develop an Elixir application via the Phoenix framework that:
- Employs Retrieval Augmented Generation (RAG) techniques
- Supports the integration and utilization of various Large Language Models (LLMs).
- Is designed with extensibility and adaptability in mind to accommodate future enhancements and modifications.
Resources
- https://elixir-lang.org/
- https://www.phoenixframework.org/
- https://github.com/elixir-nx/bumblebee
- https://ollama.com/
ghostwrAIter - a local AI assisted tool for helping with support cases by paolodepa
Description
This project is meant to fight the loneliness of the support team members, providing them an AI assistant (hopefully) capable of scraping supportconfigs in a RAG fashion, trying to answer specific questions.
Goals
- Setup an Ollama backend, spinning one (or more??) code-focused LLMs selected by license, performance and quality of the results between:
- deepseek-coder-v2
- dolphin-mistral
- starcoder2
- (...others??)
- Setup a Web UI for it, choosing an easily extensible and customizable option between:
- Extend the solution in order to be able to:
- Add ZIU/Concord shared folders to its RAG context
- Add BZ cases, splitted in comments to its RAG context
- A plus would be to login using the IDP portal to ghostwrAIter itself and use the same credentials to query BZ
- Add specific packages picking them from IBS repos
- A plus would be to login using the IDP portal to ghostwrAIter itself and use the same credentials to query IBS
- A plus would be to desume the packages of interest and the right channel and version to be picked from the added BZ cases
COOTWbot by ngetahun
Project Description
At SCC, we have a rotating task of COOTW (Commanding Office of the Week). This task involves responding to customer requests from jira and slack help channels, monitoring production systems and doing small chores. Usually, we have documentation to help the COOTW answer questions and quickly find fixes. Most of these are distributed across github, trello and SUSE Support documentation. The aim of this project is to explore the magic of LLMs and create a conversational bot.
Goal for this Hackweek
- Build data ingestion
Data source:
- SUSE KB docs
- scc github docs
- scc trello knowledge board
Test out new RAG architecture
https://gitlab.suse.de/ngetahun/cootwbot
Save pytorch models in OCI registries by jguilhermevanz
Description
A prerequisite for running applications in a cloud environment is the presence of a container registry. Another common scenario is users performing machine learning workloads in such environments. However, these types of workloads require dedicated infrastructure to run properly. We can leverage these two facts to help users save resources by storing their machine learning models in OCI registries, similar to how we handle some WebAssembly modules. This approach will save users the resources typically required for a machine learning model repository for the applications they need to run.
Goals
Allow PyTorch users to save and load machine learning models in OCI registries.
Resources
Hack on isotest-ng - a rust port of isotovideo (os-autoinst aka testrunner of openQA) by szarate
Description
Some time ago, I managed to convince ByteOtter to hack something that resembles isotovideo but in Rust, not because I believe that Perl is dead, but more because there are certain limitations in the perl code (how it was written), and its always hard to add new functionalities when they are about implementing a new backend, or fixing bugs (Along with people complaining that Perl is dead, and that they don't like it)
In reality, I wanted to see if this could be done, and ByteOtter proved that it could be, while doing an amazing job at hacking a vnc console, and helping me understand better what RuPerl needs to work.
I plan to keep working on this for the next few years, and while I don't aim for feature completion or replacing isotovideo tih isotest-ng (name in progress), I do plan to be able to use it on a daily basis, using specialized tooling with interfaces, instead of reimplementing everything in the backend
Todo
- Add
make
targets for testability, e.g "spawn qemu and type" - Add image search matching algorithm
- Add a Null test distribution provider
- Add a Perl Test Distribution Provider
- Fix unittests https://github.com/os-autoinst/isotest-ng/issues/5
- Research OpenTofu how to add new hypervisors/baremetal to OpenTofu
- Add an interface to openQA cli
Goals
- Implement at least one of the above, prepare proposals for GSoC
- Boot a system via it's BMC
Resources
See https://github.com/os-autoinst/isotest-ng
Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil
Join the Gitter channel! https://gitter.im/uyuni-project/hackweek
Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!
Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.
For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.
No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)
The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.
To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):
- Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
- Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
- Package management (install, remove, update...)
- Patching
- Applying any basic salt state (including a formula)
- Salt remote commands
- Bonus point: Java part for product identification, and monitoring enablement
- Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
- Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
- Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)
If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)
- If you don't have knowledge about some of the steps: ask the team
- If you still don't know what to do: switch to another distribution and keep testing.
This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)
Pending
FUSS
FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.
https://fuss.bz.it/
Seems to be a Debian 12 derivative, so adding it could be quite easy.
[W]
Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)[W]
Onboarding (salt minion from UI, salt minion from bootstrap script, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator) --> Working for all 3 options (salt minion UI, salt minion bootstrap script and salt-ssh minion from the UI).[W]
Package management (install, remove, update...) --> Installing a new package works, needs to test the rest.[I]
Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already). No patches detected. Do we support patches for Debian at all?[W]
Applying any basic salt state (including a formula)[W]
Salt remote commands[ ]
Bonus point: Java part for product identification, and monitoring enablement
Yearly Quality Engineering Ask me Anything - AMA for not-engineering by szarate
Goal
Get a closer look at how developers work on the Engineering team (R & D) of SUSE, and close the collaboration gap between GSI and Engineering
Why?
Santiago can go over different development workflows, and can do a deepdive into how Quality Engineering works (think of my QE Team, the advocates for your customers), The idea of this session is to help open the doors to opportunities for collaboration, and broaden our understanding of SUSE as a whole.
Objectives
- Give $audience a small window on how to get some questions answered either on the spot or within days of how some things at engineering are done
- Give Santiago Zarate from Quality Engineering a look into how $audience sees the engineering departments, and find out possibilities of further collaboration
How?
By running an "Ask me Anything" session, which is a format of a kind of open Q & A session, where participants ask the host multiple questions.
How to make it happen?
I'm happy to help joining a call or we can do it async (online/in person is more fun). Ping me over email-slack and lets make the magic happen!. Doesn't need to be during hackweek, but we gotta kickstart the idea during hackweek ;)
Rules
The rules are simple, the more questions the more fun it will be; while this will be only a window into engineering, it can also be the place to help all of us get to a similar level of understanding of the processes that are behind our respective areas of the organization.
Dynamics
The host will be monitoring the questions on some pre-agreed page, and try to answer to the best of their knowledge, if a question is too difficult or the host doesn't have the answer, he will do his best to provide an answer at a later date.
Atendees are encouraged to add questions beforehand; in the case there aren't any, we would be looking at how Quality Engineering tests new products or performs regression tests
Agenda
- Introduction of Santiago Zarate, Product Owner of Quality Engineering Core team
- Introduction of the Group/Team/Persons interested
- Ice breaker
- AMA time! Add your questions $PAGE
- Looking at QE Workflows: How is
- A maintenance update being tested before being released to our customers
- Products in development are tested before making it generally available
- Engineering Opportunity Board
Make more sense of openQA test results using AI by livdywan
Description
AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.
User Story
Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?
Goals
- Leverage a chat interface to help Allison
- Create a model from scratch based on data from openQA
- Proof of concept for automated analysis of openQA test results
Bonus
- Use AI to suggest solutions to merge conflicts
- This would need a merge conflict editor that can suggest solving the conflict
- Use image recognition for needles
Resources
Timeline
Day 1
- Conversing with open-webui to teach me how to create a model based on openQA test results
- Asking for example code using TensorFlow in Python
- Discussing log files to explore what to analyze
- Drafting a new project called Testimony (based on Implementing a containerized Python action) - the project name was also suggested by the assistant
Day 2
- Using NotebookLLM (Gemini) to produce conversational versions of blog posts
- Researching the possibility of creating a project logo with AI
- Asking open-webui, persons with prior experience and conducting a web search for advice
Highlights
- I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
- Convincing the chat interface to produce code specific to my use case required very explicit instructions.
- Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
- Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses
Outcomes
- Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
- Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.
Drag Race - comparative performance testing for pull requests by balanza
Description
«Sophia, a backend developer, submitted a pull request with optimizations for a critical database query. Once she pushed her code, an automated load test ran, comparing her query against the main branch. Moments later, she saw a new comment automatically added to her PR: the comparison results showed reduced execution time and improved efficiency. Smiling, Sophia messaged her team, “Performance gains confirmed!”»
Goals
- To have a convenient and ergonomic framework to describe test scenarios, including environment and seed;
- to compare results from different tests
- to have a GitHub action that executes such tests on a CI environment
Resources
The MVP will be built on top of Preevy and K6.