one of the top features a distribution must always ship in a working state is wireless. Yet we have no way to test it in an automated way. To be able to do that via openQA we need qemu to emulate a wireless adapter. Whether it's emulating existing hardware or implements some virtio device that only works on Linux doesn't matter.
No Hackers yet
This project is part of:
Hack Week 10
Comments
-
about 11 years ago by vbotka | Reply
FYI. " wifi-test is fully automated test script for linux wireless drivers" available at http://wireless.kernel.org/en/developers/Testing/wifi-test . Some results of the tests can be found at http://users.suse.cz/~vbotka/wt/. Cisco AP, Dlink and ASUS AP with CLI (Command Line Interface). For example, Dlink DWL-8200 AP and Cisco1200 series AP is needed. HTH.
-vlado
-
about 11 years ago by bmwiedemann | Reply
So emulating the wireless adapter alone is not sufficient - it also needs an access point (either physical or virtual) to receive the raw wireless 802.11* data and respond to association requests etc.
-
about 11 years ago by a_faerber | Reply
Some years ago an Austrian university tried to contribute Wifi emulation but threw a big blob at us, mixing random Windows hacks with the actual adapter/network emulation code, and didn't care to clean that up. Probably still available in qemu-devel archives as a starting point.
Similar Projects
Officially Become a Kernel Hacker! by m.crivellari
Description
My studies as well my spare time are dedicated to the Linux Kernel. Currently I'm focusing on interrupts on x86_64, but my interests are not restricted to one specific topic, for now.
I also "played" a little bit with kernel modules (ie lantern, a toy packet analyzer) and I've added a new syscall in order read from a task A, the memory of a task B.
Maybe this will be a good chance to...
Goals
- create my first kernel patch
Resources
- https://www.kernel.org/doc/html/latest/process/submitting-patches.html
- https://git-send-email.io/ (mentioned also in the kernel doc)
- https://javiercarrascocruz.github.io/kernel-contributor-1
Achivements
- found while working on a bug, this is the 1st patch: cifs: avoid deadlocks while updating iface
RISC-V emulator in GLSL capable of running Linux by favogt
Description
There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.
I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.
Goals
Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.
Minimum:
riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.
Stretch goals:
FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).
Resources
RISC-V ISA Specifications
Shaderoo
OpenGL 4.5 Quick Reference Card
Kill DMA and DMA32 memory zones by ptesarik
Description
Provide a better allocator for DMA-capable buffers, making the DMA and DMA32 zones obsolete.
Goals
Make a PoC kernel which can boot a x86 VM and a Raspberry Pi (because early RPi4 boards have some of the weirdest DMA constraints).
Resources
- LPC2024 talk:
- video:
Improve UML page fault handler by ptesarik
Description
Improve UML handling of segmentation faults in kernel mode. Although such page faults are generally caused by a kernel bug, it is annoying if they cause an infinite loop, or panic the kernel. More importantly, a robust implementation allows to write KUnit tests for various guard pages, preventing potential kernel self-protection regressions.
Goals
Convert the UML page fault handler to use oops_* helpers, go through a few review rounds and finally get my patch series merged in 6.14.
Resources
Wrong initial attempt: https://lore.kernel.org/lkml/20231215121431.680-1-petrtesarik@huaweicloud.com/T/
Hacking on sched_ext by flonnegren
Description
Sched_ext upstream has some interesting issues open for grabs:
Goals
Send patches to sched_ext upstream
Also set up perfetto to trace some of the example schedulers.
Resources
https://github.com/sched-ext/scx