one of the top features a distribution must always ship in a working state is wireless. Yet we have no way to test it in an automated way. To be able to do that via openQA we need qemu to emulate a wireless adapter. Whether it's emulating existing hardware or implements some virtio device that only works on Linux doesn't matter.

Looking for hackers with the skills:

qemu kernel

This project is part of:

Hack Week 10

Activity

  • over 10 years ago: michal-m liked this project.
  • over 11 years ago: a_faerber liked this project.
  • over 11 years ago: lnussel added keyword "kernel" to this project.
  • over 11 years ago: lnussel added keyword "qemu" to this project.
  • over 11 years ago: lnussel originated this project.

  • Comments

    • vbotka
      over 11 years ago by vbotka | Reply

      FYI. " wifi-test is fully automated test script for linux wireless drivers" available at http://wireless.kernel.org/en/developers/Testing/wifi-test . Some results of the tests can be found at http://users.suse.cz/~vbotka/wt/. Cisco AP, Dlink and ASUS AP with CLI (Command Line Interface). For example, Dlink DWL-8200 AP and Cisco1200 series AP is needed. HTH.

      -vlado

    • bmwiedemann
      over 11 years ago by bmwiedemann | Reply

      So emulating the wireless adapter alone is not sufficient - it also needs an access point (either physical or virtual) to receive the raw wireless 802.11* data and respond to association requests etc.

    • a_faerber
      over 11 years ago by a_faerber | Reply

      Some years ago an Austrian university tried to contribute Wifi emulation but threw a big blob at us, mixing random Windows hacks with the actual adapter/network emulation code, and didn't care to clean that up. Probably still available in qemu-devel archives as a starting point.

    • clownix
      almost 7 years ago by clownix | Reply

      Cloonix software can do wifi from version 42.03. It uses the mac80211_hwsim kernel module and an agent in the guests that transmits the signal from guest to host and to other guests.

    Similar Projects

    Modernize ocfs2 by goldwynr

    Ocfs2 has gone into a stage of neglect and disrepair. Modernize the code to generate enough interest.

    Goals: * Change the mount sequence to use fscontext * Move from using bufferhead to bio/folios * Use iomap * Run it through xfstests


    RISC-V emulator in GLSL capable of running Linux by favogt

    Description

    There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.

    I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.

    Goals

    Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.

    Minimum:

    riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.

    Stretch goals:

    FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).

    Resources

    RISC-V ISA Specifications
    Shaderoo
    OpenGL 4.5 Quick Reference Card

    Result as of Hackweek 2024

    WebGL turned out to be insufficient, it only supports OpenGL ES 3.0 but imageLoad/imageStore needs ES 3.1. So we switched directions and had to write a native C++ host for the shaders.

    As of Hackweek Friday, the kernel attempts to boot and outputs messages, but panics due to missing memory regions.

    Since then, some bugs were fixed and enough hardware emulation implemented, so that now Linux boots with framebuffer support and it's possible to log in and run programs!

    The repo with a demo video is available at https://github.com/Vogtinator/risky-v


    Create DRM drivers for VESA and EFI framebuffers by tdz

    Description

    We already have simpledrm for firmware framebuffers. But the driver is originally for ARM boards, not PCs. It is already overloaded with code to support both use cases. At the same time it is missing possible features for VESA and EFI, such as palette modes or EDID support. We should have DRM drivers for VESA and EFI interfaces. The infrastructure exists already and initial drivers can be forked from simpledrm.

    Goals

    • Initially, a bare driver for VESA or EFI should be created. It can take functionality from simpledrm.
    • Then we can begin to add additional features. The boot loader can provide EDID data. With VGA hardware, VESA can support paletted modes or color management. Example code exists in vesafb.


    Kill DMA and DMA32 memory zones by ptesarik

    Description

    Provide a better allocator for DMA-capable buffers, making the DMA and DMA32 zones obsolete.

    Goals

    Make a PoC kernel which can boot a x86 VM and a Raspberry Pi (because early RPi4 boards have some of the weirdest DMA constraints).

    Resources

    • LPC2024 talk:
    • video:


    Linux on Cavium CN23XX cards by tsbogend

    Before Cavium switched to ARM64 CPUs they developed quite powerful MIPS based SOCs. The current upstream Linux kernel already supports some Octeon SOCs, but not the latest versions. Goal of this Hack Week project is to use the latest Cavium SDK to update the Linux kernel code to let it running on CN23XX network cards.