Project Description

Uyuni: add SLE-Micro acceptance tests

Goal for this Hackweek

1 - Learn how to create an acceptance tests from scratch

2 - Create an acceptance test for SLE-Micro onboarding

3 - Create an acceptance test for all the other feature (install/remove packages, action chains etc...)

Looking for hackers with the skills:

uyuni cucumber testing

This project is part of:

Hack Week 22

Activity

  • almost 3 years ago: j_renner liked this project.
  • almost 3 years ago: okurz liked this project.
  • almost 3 years ago: mbussolotto added keyword "testing" to this project.
  • almost 3 years ago: mbussolotto added keyword "cucumber" to this project.
  • almost 3 years ago: mbussolotto added keyword "uyuni" to this project.
  • almost 3 years ago: mbussolotto originated this project.

  • Comments

    • dgedon
      almost 3 years ago by dgedon | Reply

      For our BV there is already a PR pending: https://github.com/uyuni-project/uyuni/pull/5723

    Similar Projects

    Uyuni read-only replica by cbosdonnat

    Description

    For now, there is no possible HA setup for Uyuni. The idea is to explore setting up a read-only shadow instance of an Uyuni and make it as useful as possible.

    Possible things to look at:

    • live sync of the database, probably using the WAL. Some of the tables may have to be skipped or some features disabled on the RO instance (taskomatic, PXT sessions…)
    • Can we use a load balancer that routes read-only queries to either instance and the other to the RW one? For example, packages or PXE data can be served by both, the API GET requests too. The rest would be RW.

    Goals

    • Prepare a document explaining how to do it.
    • PR with the needed code changes to support it


    Move Uyuni Test Framework from Selenium to Playwright + AI by oscar-barrios

    Description

    This project aims to migrate the existing Uyuni Test Framework from Selenium to Playwright. The move will improve the stability, speed, and maintainability of our end-to-end tests by leveraging Playwright's modern features. We'll be rewriting the current Selenium code in Ruby to Playwright code in TypeScript, which includes updating the test framework runner, step definitions, and configurations. This is also necessary because we're moving from Cucumber Ruby to CucumberJS.

    If you're still curious about the AI in the title, it was just a way to grab your attention. Thanks for your understanding.


    Goals

    • Migrate Core tests including Onboarding of clients
    • Improve test reliabillity: Measure and confirm a significant reduction of flakynes.
    • Implement a robust framework: Establish a well-structured and reusable Playwright test framework using the CucumberJS

    Resources


    Set Uyuni to manage edge clusters at scale by RDiasMateus

    Description

    Prepare a Poc on how to use MLM to manage edge clusters. Those cluster are normally equal across each location, and we have a large number of them.

    The goal is to produce a set of sets/best practices/scripts to help users manage this kind of setup.

    Goals

    step 1: Manual set-up

    Goal: Have a running application in k3s and be able to update it using System Update Controler (SUC)

    • Deploy Micro 6.2 machine
    • Deploy k3s - single node

      • https://docs.k3s.io/quick-start
    • Build/find a simple web application (static page)

      • Build/find a helmchart to deploy the application
    • Deploy the application on the k3s cluster

    • Install App updates through helm update

    • Install OS updates using MLM

    step 2: Multi-node cluster

    Goal: Use SUC to update a multi-node cluster.

    • Create a multi-node cluster
    • Deploy application
    • Install App updates through helm update
    • Prepare a SUC for OS update (k3s also? How?)
      • https://github.com/rancher/system-upgrade-controller
      • https://documentation.suse.com/cloudnative/k3s/latest/en/upgrades/automated.html

    step 3: Automate day 2

    Goal: Trigger the application deployment and update from MLM

    • Salt states For application (with static data)
      • Deploy the application helmchart, if not present
      • Update/deploy the SUC?
      • Update/deploy the SUC CRD with the update procedure
    • Salt states to deploy k3s cluster?
    • Link it to GIT
      • Define how to link the state to the machines (based in some pillar data? Using configuration channels by importing the state? Naming convention?)
      • Use git update to trigger helmchart app update
      • Update git SUC - CR and apply the state to trigger the update of the machine.
    • Recurrent state applying configuration channel?


    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources


    Uyuni Health-check Grafana AI Troubleshooter by ygutierrez

    Description

    This project explores the feasibility of using the open-source Grafana LLM plugin to enhance the Uyuni Health-check tool with LLM capabilities. The idea is to integrate a chat-based "AI Troubleshooter" directly into existing dashboards, allowing users to ask natural-language questions about errors, anomalies, or performance issues.

    Goals

    • Investigate if and how the grafana-llm-app plug-in can be used within the Uyuni Health-check tool.
    • Investigate if this plug-in can be used to query LLMs for troubleshooting scenarios.
    • Evaluate support for local LLMs and external APIs through the plugin.
    • Evaluate if and how the Uyuni MCP server could be integrated as another source of information.

    Resources

    Grafana LMM plug-in

    Uyuni Health-check


    Move Uyuni Test Framework from Selenium to Playwright + AI by oscar-barrios

    Description

    This project aims to migrate the existing Uyuni Test Framework from Selenium to Playwright. The move will improve the stability, speed, and maintainability of our end-to-end tests by leveraging Playwright's modern features. We'll be rewriting the current Selenium code in Ruby to Playwright code in TypeScript, which includes updating the test framework runner, step definitions, and configurations. This is also necessary because we're moving from Cucumber Ruby to CucumberJS.

    If you're still curious about the AI in the title, it was just a way to grab your attention. Thanks for your understanding.


    Goals

    • Migrate Core tests including Onboarding of clients
    • Improve test reliabillity: Measure and confirm a significant reduction of flakynes.
    • Implement a robust framework: Establish a well-structured and reusable Playwright test framework using the CucumberJS

    Resources


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    Pending

    Debian 13

    The new version of the beloved Debian GNU/Linux OS

    Seems to be a Debian 12 derivative, so adding it could be quite easy.

    • [ ] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    • W] Onboarding (salt minion from UI, salt minion from bootstrap script, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [ ] Package management (install, remove, update...)
    • [ ] Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already). Probably not for Debian as IIRC we don't support patches yet.
    • [ ] Applying any basic salt state (including a formula)
    • [ ] Salt remote commands
    • [ ] Bonus point: Java part for product identification, and monitoring enablement
    • [ ] Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    • [ ] Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    Pending

    Debian 13

    The new version of the beloved Debian GNU/Linux OS

    Seems to be a Debian 12 derivative, so adding it could be quite easy.

    • [ ] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    • W] Onboarding (salt minion from UI, salt minion from bootstrap script, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [ ] Package management (install, remove, update...)
    • [ ] Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already). Probably not for Debian as IIRC we don't support patches yet.
    • [ ] Applying any basic salt state (including a formula)
    • [ ] Salt remote commands
    • [ ] Bonus point: Java part for product identification, and monitoring enablement
    • [ ] Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    • [ ] Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)


    openQA tests needles elaboration using AI image recognition by mdati

    Description

    In the openQA test framework, to identify the status of a target SUT image, a screenshots of GUI or CLI-terminal images, the needles framework scans the many pictures in its repository, having associated a given set of tags (strings), selecting specific smaller parts of each available image. For the needles management actually we need to keep stored many screenshots, variants of GUI and CLI-terminal images, eachone accompanied by a dedicated set of data references (json).

    A smarter framework, using image recognition based on AI or other image elaborations tools, nowadays widely available, could improve the matching process and hopefully reduce time and errors, during the images verification and detection process.

    Goals

    Main scope of this idea is to match a non-text status of a running openQA test, an image of a shell console or application-GUI screenshot, using less time and resources and with less errors in data preparation and use, than the actual openQA needles framework; that is:

    • having a given SUT (system under test) GUI or CLI-terminal screenshot, with a local distribution of pixels or text commands related to a running test status,
    • we want to identify a desired target, e.g. a screen image status or data/commands context,
      • based on AI/ML-pretrained archives containing object or other proper elaboration tools,
      • possibly able to identify also object not present in the archive, i.e. by means of AI/ML mechanisms.
    • the matching result should be then adapted to continue working in the openQA test, likewise and in place of the same result that would have been produced by the original openQA needles framework.
    • We expect an improvement of the matching-time(less time), reliability of the expected result(less error) and simplification of archive maintenance in adding/removing objects(smaller DB and less actions).

    Hackweek step

    POC:

    • study the available tools
    • prepare a plan for the process to build
    • write and build a draft application
    • prepare the data archive from a subset of needles
    • initialize/pre-train the base archive
    • select a screenshot from the subset, removing/changing some part
    • run the POC application
    • expect the image type is identified in a good %.

    Resources

    first step of this project is quite identification of useful resources for the scope; some possibilities are:

    • SUSE AI and other ML tools (i.e. Tensorflow)
    • Tools able to manage images
    • RPA test tools (like i.e. Robot framework)
    • other.


    Multimachine on-prem test with opentofu, ansible and Robot Framework by apappas

    Description

    A long time ago I explored using the Robot Framework for testing. A big deficiency over our openQA setup is that bringing up and configuring the connection to a test machine is out of scope.

    Nowadays we have a way¹ to deploy SUTs outside openqa, but we only use if for cloud tests in conjuction with openqa. Using knowledge gained from that project I am going to try to create a test scenario that replicates an openqa test but this time including the deployment and setup of the SUT.

    Goals

    Create a simple multimachine test scenario with the support server and SUT all created by the robot framework.

    Resources

    1. https://github.com/SUSE/qe-sap-deployment
    2. terraform-libvirt-provider