Project Description
This project will create a simple chat-bot for tutoring children for school. Lessons will be pre-configured by feeding in a document and requesting the material be taught to a child in consideration of the child's age, etc.
Goal for this Hackweek
Create an interface to have student/teacher logins, where a teacher can configure a lesson for the day. A configured lesson is simply providing initial prompts to the chat-bot.
Resources
https://github.com/dmulder/TinyTutor
This project is part of:
Hack Week 23
Activity
Comments
Similar Projects
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
AI + Board Games
Board games have long been fertile ground for AI innovation, pushing the boundaries of capabilities such as strategy, adaptability, and real-time decision-making - from Deep Blue's chess mastery to AlphaZero’s domination of Go. Games aren’t just fun: they’re complex, dynamic problems that often mirror real-world challenges, making them interesting from an engineering perspective.
As avid board gamers, aspiring board game designers, and engineers with careers in open source infrastructure, we’re excited to dive into the latest AI techniques first-hand.
Our goal is to develop an all-open-source, all-green AWS-based stack powered by some serious hardware to drive our board game experiments forward!
Project Goals
Set Up the Stack:
- Install and configure the TAG and PyTAG frameworks on SUSE Linux Enterprise Base Container Images.
- Integrate with the SUSE AI stack for GPU-accelerated training on AWS.
- Validate a sample GPU-accelerated PyTAG workload on SUSE AI.
- Ensure the setup is entirely repeatable with Terraform and configuration scripts, documenting results along the way.
Design and Implement AI Agents:
- Develop AI agents for the two board games, incorporating Statistical Forward Planning and Deep Reinforcement Learning techniques.
- Fine-tune model parameters to optimize game-playing performance.
- Document the advantages and limitations of each technique.
Test, Analyze, and Refine:
- Conduct AI vs. AI and AI vs. human matches to evaluate agent strategies and performance.
- Record insights, document learning outcomes, and refine models based on real-world gameplay.
Technical Stack
- Frameworks: TAG and PyTAG for AI agent development
- Platform: SUSE AI
- Tools: AWS for high-performance GPU acceleration
Why This Project Matters
This project not only deepens our understanding of AI techniques by doing but also showcases the power and flexibility of SUSE’s open-source infrastructure for supporting high-level AI projects. By building on an all-open-source stack, we aim to create a pathway for other developers and AI enthusiasts to explore, experiment, and deploy their own innovative projects within the open-source space.
Our Motivation
We believe hands-on experimentation is the best teacher.
Combining our engineering backgrounds with our passion for board games, we’ll explore AI in a way that’s both challenging and creatively rewarding. Our ultimate goal? To hack an AI agent that’s as strategic and adaptable as a real human opponent (if not better!) — and to leverage it to design even better games... for humans to play!
Make more sense of openQA test results using AI by livdywan
Description
AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.
User Story
Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?
Goals
- Leverage a chat interface to help Allison
- Create a model from scratch based on data from openQA
- Proof of concept for automated analysis of openQA test results
Bonus
- Use AI to suggest solutions to merge conflicts
- This would need a merge conflict editor that can suggest solving the conflict
- Use image recognition for needles
Resources
Timeline
Day 1
- Conversing with open-webui to teach me how to create a model based on openQA test results
- Asking for example code using TensorFlow in Python
- Discussing log files to explore what to analyze
- Drafting a new project called Testimony (based on Implementing a containerized Python action) - the project name was also suggested by the assistant
Day 2
- Using NotebookLLM (Gemini) to produce conversational versions of blog posts
- Researching the possibility of creating a project logo with AI
- Asking open-webui, persons with prior experience and conducting a web search for advice
Highlights
- I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
- Convincing the chat interface to produce code specific to my use case required very explicit instructions.
- Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
- Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses
Outcomes
- Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
- Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.
Learn how to integrate Elixir and Phoenix Liveview with LLMs by ninopaparo
Description
Learn how to integrate Elixir and Phoenix Liveview with LLMs by building an application that can provide answers to user queries based on a corpus of custom-trained data.
Goals
Develop an Elixir application via the Phoenix framework that:
- Employs Retrieval Augmented Generation (RAG) techniques
- Supports the integration and utilization of various Large Language Models (LLMs).
- Is designed with extensibility and adaptability in mind to accommodate future enhancements and modifications.
Resources
- https://elixir-lang.org/
- https://www.phoenixframework.org/
- https://github.com/elixir-nx/bumblebee
- https://ollama.com/
Automated Test Report reviewer by oscar-barrios
Description
In SUMA/Uyuni team we spend a lot of time reviewing test reports, analyzing each of the test cases failing, checking if the test is a flaky test, checking logs, etc.
Goals
Speed up the review by automating some parts through AI, in a way that we can consume some summary of that report that could be meaningful for the reviewer.
Resources
No idea about the resources yet, but we will make use of:
- HTML/JSON Report (text + screenshots)
- The Test Suite Status GithHub board (via API)
- The environment tested (via SSH)
- The test framework code (via files)
Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez
Description
Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.
Goals
- Explore Ollama
- Test different models
- Fine tuning
- Explore possible integration in Uyuni
Resources
- https://ollama.com/
- https://huggingface.co/
- https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/
Symbol Relations by hli
Description
There are tools to build function call graphs based on parsing source code, for example, cscope
.
This project aims to achieve a similar goal by directly parsing the disasembly (i.e. objdump) of a compiled binary. The assembly code is what the CPU sees, therefore more "direct". This may be useful in certain scenarios, such as gdb/crash debugging.
Detailed description and Demos can be found in the README file:
Supports x86 for now (because my customers only use x86 machines), but support for other architectures can be added easily.
Tested with python3.6
Goals
Any comments are welcome.
Resources
https://github.com/lhb-cafe/SymbolRelations
symrellib.py: mplements the symbol relation graph and the disassembly parser
symrel_tracer*.py: implements tracing (-t option)
symrel.py: "cli parser"
Small healthcheck tool for Longhorn by mbrookhuis
Project Description
We have often problems (e.g. pods not starting) that are related to PVCs not running, cluster (nodes) not all up or deployments not running or completely running. This all prevents administration activities. Having something that can regular be run to validate the status of the cluster would be helpful, and not as of today do a lot of manual tasks.
As addition (read enough time), we could add changing reservation, adding new disks, etc. --> This didn't made it. But the scripts can easily be adopted.
This tool would decrease troubleshooting time, giving admins rights to the rancher GUI and could be used in automation.
Goal for this Hackweek
At the end we should have a small python tool that is doing a (very) basic health check on nodes, deployments and PVCs. First attempt was to make it in golang, but that was taking to much time.
Overview
This tool will run a simple healthcheck on a kubernetes cluster. It will perform the following actions:
node check: This will check all nodes, and display the status and the k3s version. If the status of the nodes is not "Ready" (this should be only reported), the cluster will be reported as having problems
deployment check: This check will list all deployments, and display the number of expected replicas and the used replica. If there are unused replicas this will be displayed. The cluster will be reported as having problems.
pvc check: This check will list of all pvc's, and display the status and the robustness. If the robustness is not "Healthy", the cluster will be reported as having problems.
If there is a problem registered in the checks, there will be a warning that the cluster is not healthy and the program will exit with 1.
The script has 1 mandatory parameter and that is the kubeconf of the cluster or of a node off the cluster.
The code is writen for Python 3.11, but will also work on 3.6 (the default with SLES15.x). There is a venv present that will contain all needed packages. Also, the script can be run on the cluster itself or any other linux server.
Installation
To install this project, perform the following steps:
- Create the directory /opt/k8s-check
mkdir /opt/k8s-check
- Copy all the file to this directory and make the following changes:
chmod +x k8s-check.py
Selenium with Python by xguo
Description
Try to create test case about Selenium base on Python
Goals
- Knowledge about Selenium with Python
- Create new test case about Selenium
Resources
https://selenium-python.readthedocs.io/ https://www.selenium.dev/