Project Description

We have often problems (e.g. pods not starting) that are related to PVCs not running, cluster (nodes) not all up or deployments not running or completely running. This all prevents administration activities. Having something that can regular be run to validate the status of the cluster would be helpful, and not as of today do a lot of manual tasks.

As addition (read enough time), we could add changing reservation, adding new disks, etc. --> This didn't made it. But the scripts can easily be adopted.

This tool would decrease troubleshooting time, giving admins rights to the rancher GUI and could be used in automation.

Goal for this Hackweek

At the end we should have a small python tool that is doing a (very) basic health check on nodes, deployments and PVCs. First attempt was to make it in golang, but that was taking to much time.

Overview

This tool will run a simple healthcheck on a kubernetes cluster. It will perform the following actions:

  • node check: This will check all nodes, and display the status and the k3s version. If the status of the nodes is not "Ready" (this should be only reported), the cluster will be reported as having problems

  • deployment check: This check will list all deployments, and display the number of expected replicas and the used replica. If there are unused replicas this will be displayed. The cluster will be reported as having problems.

  • pvc check: This check will list of all pvc's, and display the status and the robustness. If the robustness is not "Healthy", the cluster will be reported as having problems.

If there is a problem registered in the checks, there will be a warning that the cluster is not healthy and the program will exit with 1.

The script has 1 mandatory parameter and that is the kubeconf of the cluster or of a node off the cluster.

The code is writen for Python 3.11, but will also work on 3.6 (the default with SLES15.x). There is a venv present that will contain all needed packages. Also, the script can be run on the cluster itself or any other linux server.

Installation

To install this project, perform the following steps:

  • Create the directory /opt/k8s-check

mkdir /opt/k8s-check

  • Copy all the file to this directory and make the following changes:

chmod +x k8s-check.py

note:

If you want to run this program in you on python environment or the default of the server, please perform the following actions:

  • install the needed modules:

pip install tabulate kubernetes

  • change the first line of k8s-check.py to:

\#!/usr/bin/env python3

Usage

As mentioned above, for the executing of the script the kubeconfig is needed. If this happens on the node, please use the local kubeconfig (e.g. for k3s this will be: /etc/rancher/k3s/k3s.yaml). If the script is run on a different server, copy the kubeconfig to this server. Executing the following will do the magic:

/opt/k8s-check --kubeconfig

repository link

https://github.com/mbrookhuis/k8s-check

keywords: longhorn monitoring python

Looking for hackers with the skills:

kubernetes python3 rancher slemicro edge

This project is part of:

Hack Week 24

Activity

  • 20 days ago: mbrookhuis added keyword "python3" to this project.
  • 20 days ago: mbrookhuis added keyword "rancher" to this project.
  • 20 days ago: mbrookhuis added keyword "slemicro" to this project.
  • 20 days ago: mbrookhuis added keyword "edge" to this project.
  • 20 days ago: mbrookhuis added keyword "kubernetes" to this project.
  • 2 months ago: bkampen liked this project.
  • 3 months ago: mbrookhuis started this project.
  • 3 months ago: mbrookhuis originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Install Uyuni on Kubernetes in cloud-native way by cbosdonnat

    Description

    For now installing Uyuni on Kubernetes requires running mgradm on a cluster node... which is not what users would do in the Kubernetes world. The idea is to implement an installation based only on helm charts and probably an operator.

    Goals

    Install Uyuni from Rancher UI.

    Resources


    Mammuthus - The NFS-Ganesha inside Kubernetes controller by vcheng

    Description

    As the user-space NFS provider, the NFS-Ganesha is wieldy use with serval projects. e.g. Longhorn/Rook. We want to create the Kubernetes Controller to make configuring NFS-Ganesha easy. This controller will let users configure NFS-Ganesha through different backends like VFS/CephFS.

    Goals

    1. Create NFS-Ganesha Package on OBS: nfs-ganesha5, nfs-ganesha6
    2. Create NFS-Ganesha Container Image on OBS: Image
    3. Create a Kubernetes controller for NFS-Ganesha and support the VFS configuration on demand. Mammuthus

    Resources

    NFS-Ganesha


    Metrics Server viewer for Kubernetes by bkampen

    This project is finished please visit the github repo below for the tool.

    Description

    Build a CLI tools which can visualize Kubernetes metrics from the metrics-server, so you're able to watch these without installing Prometheus and Grafana on a cluster.

    Goals

    • Learn more about metrics-server
    • Learn more about the inner workings of Kubernetes.
    • Learn more about Go

    Resources

    https://github.com/bvankampen/metrics-viewer


    Multi-pod, autoscalable Elixir application in Kubernetes using K8s resources by socon

    Description

    Elixir / Erlang use their own solutions to create clusters that work together. Kubernetes provide its own orchestration. Due to the nature of the BEAM, it looks a very promising technology for applications that run in Kubernetes and requite to be always on, specifically if they are created as web pages using Phoenix.

    Goals

    • Investigate and provide solutions that work in Phoenix LiveView using Kubernetes resources, so a multi-pod application can be used
    • Provide an end to end example that creates and deploy a container from source code.

    Resources

    https://github.com/dwyl/phoenix-liveview-counter-tutorial https://github.com/propedeutica/elixir-k8s-counter


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    Enhance UV openQA helper script by mdonis

    Description

    A couple months ago an UV openQA helper script was created to help/automate the searching phase inside openQA for a given MU to test. The script searches inside all our openQA job groups (qam-sle) related with a given MU and generates an output suitable to add (copy & paste) inside the update log.

    This is still a WIP and could use some enhancements.

    Goals

    • Move script from bash to python: this would be useful in case we want to include this into MTUI in the future. The script will be separate from MTUI for now. The idea is to have this as a CLI tool using the click library or something similar.
    • Add option to look for jobs in other sections inside aggregated updates: right now, when looking for regression tests under aggregated updates for a given MU, the script only looks inside the Core MU job group. This is where most of the regression tests we need are located, but some MUs have their regression tests under the YaST/Containers/Security MU job groups. We should keep the Core MU group as a default, but add an option to be able to look into other job groups under aggregated updates.
    • Remove the -a option: this option is used to indicate the update ID and is mandatory right now. This is a bit weird and goes against posix stardards. It was developed this way in order to avoid using positional parameters. This problem should be fixed if we move the script to python.

    Some other ideas to consider:

    • Look into the QAM dashboard API. This has more info on each MU, could use this to link general openQA build results, whether the related RR is approved or not, etc
    • Make it easier to see if there's regression tests for a package in an openQA test build. Check if there's a possibility to search for tests that have the package name in them inside each testsuite.
    • Unit testing?

    More ideas TBD

    Resources

    https://github.com/os-autoinst/scripts/blob/master/openqa-search-maintenance-core-jobs

    https://confluence.suse.com/display/maintenanceqa/Guide+on+how+to+test+Updates

    Post-Hackweek update

    All major features were implemented. Unit tests are still in progress, and project will be moved to the SUSE github org once everything's done. https://github.com/mjdonis/oqa-search


    Selenium with Python by xguo

    Description

    Try to create test case about Selenium base on Python

    Goals

    • Knowledge about Selenium with Python
    • Create new test case about Selenium

    Resources

    https://selenium-python.readthedocs.io/ https://www.selenium.dev/


    Symbol Relations by hli

    Description

    There are tools to build function call graphs based on parsing source code, for example, cscope.

    This project aims to achieve a similar goal by directly parsing the disasembly (i.e. objdump) of a compiled binary. The assembly code is what the CPU sees, therefore more "direct". This may be useful in certain scenarios, such as gdb/crash debugging.

    Detailed description and Demos can be found in the README file:

    Supports x86 for now (because my customers only use x86 machines), but support for other architectures can be added easily.

    Tested with python3.6

    Goals

    Any comments are welcome.

    Resources

    https://github.com/lhb-cafe/SymbolRelations

    symrellib.py: mplements the symbol relation graph and the disassembly parser

    symrel_tracer*.py: implements tracing (-t option)

    symrel.py: "cli parser"


    Longhorn UI Extension (POC) by yiya.chen

    Description

    The goal is to create a Longhorn UI extension within Rancher using existing resources.
    Longhorn’s UI is built using React, while Rancher’s UI extensions are built using Vue. Developers will explore different approaches to integrate and extend Longhorn’s UI within Rancher’s Vue-based ecosystem, aiming to create a seamless, functional UI extension.

    Goals

    • Build a Longhorn UI extension (look and feel)
    • Support theme switching to align with Rancher’s UI

    Results

    • https://github.com/a110605/longhorn-hackday
    • https://github.com/a110605/longhorn-ui/tree/darkmode
    • https://github.com/houhoucoop/hackweek/tree/main/hackweek24

    Resources

    • Longhorn UI: https://github.com/longhorn/longhorn-ui
    • Rancher UI Extension: https://extensions.rancher.io/extensions/next/home
    • darkreader: https://www.npmjs.com/package/darkreader
    • veaury: https://github.com/gloriasoft/veaury
    • module federation: https://webpack.js.org/concepts/module-federation/


    Integrate Backstage with Rancher Manager by nwmacd

    Description

    Backstage (backstage.io) is an open-source, CNCF project that allows you to create your own developer portal. There are many plugins for Backstage.

    This could be a great compliment to Rancher Manager.

    Goals

    Learn and experiment with Backstage and look at how this could be integrated with Rancher Manager. Goal is to have some kind of integration completed in this Hack week.

    Progress

    Screen shot of home page at the end of Hackweek:

    Home

    Day One

    • Got Backstage running locally, understanding configuration with HTTPs.
    • Got Backstage embedded in an IFRAME inside of Rancher
    • Added content into the software catalog (see: https://backstage.io/docs/features/techdocs/getting-started/)
    • Understood more about the entity model

    Day Two

    • Connected Backstage to the Rancher local cluster and configured the Kubernetes plugin.
    • Created Rancher theme to make the light theme more consistent with Rancher

    Home

    Days Three and Day Four

    • Created two backend plugins for Backstage:

      1. Catalog Entity Provider - this imports users from Rancher into Backstage
      2. Auth Provider - uses the proxied sign-in pattern to check the Rancher session cookie, to user that to authenticate the user with Rancher and then log them into Backstage by connecting this to the imported User entity from the catalog entity provider plugin.
    • With this in place, you can single-sign-on between Rancher and Backstage when it is deployed within Rancher. Note this is only when running locally for development at present

    Home

    Home

    Day Five

    • Start to build out a production deployment for all of the above
    • Made some progress, but hit issues with the authentication and proxying when running proxied within Rancher, which needs further investigation


    Cluster API Provider for Harvester by rcase

    Project Description

    The Cluster API "infrastructure provider" for Harvester, also named CAPHV, makes it possible to use Harvester with Cluster API. This enables people and organisations to create Kubernetes clusters running on VMs created by Harvester using a declarative spec.

    The project has been bootstrapped in HackWeek 23, and its code is available here.

    Work done in HackWeek 2023

    • Have a early working version of the provider available on Rancher Sandbox : *DONE *
    • Demonstrated the created cluster can be imported using Rancher Turtles: DONE
    • Stretch goal - demonstrate using the new provider with CAPRKE2: DONE and the templates are available on the repo

    Goals for HackWeek 2024

    • Add support for ClusterClass
    • Add e2e testing
    • Add more Unit Tests
    • Improve Status Conditions to reflect current state of Infrastructure
    • Improve CI (some bugs for release creation)
    • Testing with newer Harvester version (v1.3.X and v1.4.X)
    • Due to the length and complexity of the templates, maybe package some of them as Helm Charts.
    • Other improvement suggestions are welcome!

    DONE in HackWeek 24:

    Thanks to @isim and Dominic Giebert for their contributions!

    Resources

    Looking for help from anyone interested in Cluster API (CAPI) or who wants to learn more about Harvester.

    This will be an infrastructure provider for Cluster API. Some background reading for the CAPI aspect:


    Rancher microfrontend extensions by ftorchia

    Description

    Rancher UI Extensions allow users, developers, partners, and customers to extend and enhance the Rancher UI. Extensions are Helm charts that can only be installed once into a cluster. The charts contain a UI built package that is downloaded and linked to the Host UI at runtime; this means that the extension pkg needs to be implemented using the same technology and have the same APIs as Rancher UI.

    Goals

    We want to create a new type of Rancher extension, based on microfrontend pattern. The extension is served in a docker container in the k8s clusters and embedded in the host UI; this would guarantee us to be able to create extensions unrelated to the rancher UI architecture, in any technology.

    Non Goals

    We want to apply the microfrontend pattern to the product-level extensions; we don't want to apply it to cluster-level extensions.

    Resources

    rancher-extension-microfrontend, Rancher extensions


    CVE portal for SUSE Rancher products by gmacedo

    Description

    Currently it's a bit difficult for users to quickly see the list of CVEs affecting images in Rancher, RKE2, Harvester and Longhorn releases. Users need to individually look for each CVE in the SUSE CVE database page - https://www.suse.com/security/cve/ . This is not optimal, because those CVE pages are a bit hard to read and contain data for all SLE and BCI products too, making it difficult to easily see only the CVEs affecting the latest release of Rancher, for example. We understand that certain costumers are only looking for CVE data for Rancher and not SLE or BCI.

    Goals

    The objective is to create a simple to read and navigate page that contains only CVE data related to Rancher, RKE2, Harvester and Longhorn, where it's easy to search by a CVE ID, an image name or a release version. The page should also provide the raw data as an exportable CSV file.

    It must be an MVP with the minimal amount of effort/time invested, but still providing great value to our users and saving the wasted time that the Rancher Security team needs to spend by manually sharing such data. It might not be long lived, as it can be replaced in 2-3 years with a better SUSE wide solution.

    Resources

    • The page must be simple and easy to read.
    • The UI/UX must be as straightforward as possible with minimal visual noise.
    • The content must be created automatically from the raw data that we already have internally.
    • It must be updated automatically on a daily basis and on ad-hoc runs (when needed).
    • The CVE status must be aligned with VEX.
    • The raw data must be exportable as CSV file.
    • Ideally it will be written in Go or pure Shell script with basic HTML and no external dependencies in CSS or JS.


    Edge Image Builder and mkosi for Uyuni by oholecek

    Description

    One part of Uyuni system management tool is ability to build custom images. Currently Uyuni supports only Kiwi image builder.

    Kiwi however is not the only image building system out there and with the goal to also become familiar with other systems, this projects aim to add support for Edge Image builder and systemd's mkosi systems.

    Goals

    Uyuni is able to

    • provision EIB and mkosi build hosts
    • build EIB and mkosi images and store them

    Resources

    • Uyuni - https://github.com/uyuni-project/uyuni
    • Edge Image builder - https://github.com/suse-edge/edge-image-builder
    • mkosi - https://github.com/systemd/mkosi


    Build Edge Image Builder ISO with SUSE Manager by mweiss2

    Description

    With SUSE Manager, we can build OS Images using KIWI and container images. As we have Edge Image Builder, we want to see if it is possible to use SUSE Manager to build/customize OS Images by integrating Edge Image Builder as well.

    Goals

    To make the process easier for customers, a single-build pipeline that automatically adds the combustion and artifact files from the EIB process is desirable.

    • Kiwi and EIB need to come from a Git Repository.
    • Kiwi and EIB need to be running as containers.
    • Configuration options for the images used for Kiwi and EIB build.
    • X86 and ARM64 Support.
    • SUSE Manager 4.3 and 5.X Support.
    • SLES 15 SP6 / SL Micro 6.0 and SL Micro 6.1 Support.

    Outcome

    • Change the Kiwi build process to use Podman with the Kiwi image registry.suse.com/bci/kiwi:10.1.10
    • Change the Edge Image Builder to produce a combustion-only ISO
    • Extract the contents and write them to a dedicated /OEM partition integrated via Kiwi into the ISO Kiwi creates.

    Sources and PRs

    • https://github.com/Martin-Weiss/kiwi-image-micro-gpu-60
    • https://github.com/suse-edge/edge-image-builder/pull/618
    • https://github.com/uyuni-project/uyuni/pull/9507