Description

A prerequisite for running applications in a cloud environment is the presence of a container registry. Another common scenario is users performing machine learning workloads in such environments. However, these types of workloads require dedicated infrastructure to run properly. We can leverage these two facts to help users save resources by storing their machine learning models in OCI registries, similar to how we handle some WebAssembly modules. This approach will save users the resources typically required for a machine learning model repository for the applications they need to run.

Goals

Allow PyTorch users to save and load machine learning models in OCI registries.

Resources

Looking for hackers with the skills:

ai mlops pytorch oci cloud

This project is part of:

Hack Week 24

Activity

  • about 1 year ago: horon liked this project.
  • about 1 year ago: jguilhermevanz started this project.
  • about 1 year ago: jguilhermevanz added keyword "ai" to this project.
  • about 1 year ago: jguilhermevanz added keyword "mlops" to this project.
  • about 1 year ago: jguilhermevanz added keyword "pytorch" to this project.
  • about 1 year ago: jguilhermevanz added keyword "oci" to this project.
  • about 1 year ago: jguilhermevanz added keyword "cloud" to this project.
  • about 1 year ago: jguilhermevanz originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    SUSE Edge Image Builder MCP by eminguez

    Description

    Based on my other hackweek project, SUSE Edge Image Builder's Json Schema I would like to build also a MCP to be able to generate EIB config files the AI way.

    Realistically I don't think I'll be able to have something consumable at the end of this hackweek but at least I would like to start exploring MCPs, the difference between an API and MCP, etc.

    Goals

    • Familiarize myself with MCPs
    • Unrealistic: Have an MCP that can generate an EIB config file

    Resources

    Result

    https://github.com/e-minguez/eib-mcp

    I've extensively used antigravity and its agent mode to code this. This heavily uses https://hackweek.opensuse.org/25/projects/suse-edge-image-builder-json-schema for the MCP to be built.

    I've ended up learning a lot of things about "prompting", json schemas in general, some golang, MCPs and AI in general :)

    Example:

    Generate an Edge Image Builder configuration for an ISO image based on slmicro-6.2.iso, targeting x86_64 architecture. The output name should be 'my-edge-image' and it should install to /dev/sda. It should deploy a 3 nodes kubernetes cluster with nodes names "node1", "node2" and "node3" as: * hostname: node1, IP: 1.1.1.1, role: initializer * hostname: node2, IP: 1.1.1.2, role: agent * hostname: node3, IP: 1.1.1.3, role: agent The kubernetes version should be k3s 1.33.4-k3s1 and it should deploy a cert-manager helm chart (the latest one available according to https://cert-manager.io/docs/installation/helm/). It should create a user called "suse" with password "suse" and set ntp to "foo.ntp.org". The VIP address for the API should be 1.2.3.4

    Generates:

    ``` apiVersion: "1.0" image: arch: x86_64 baseImage: slmicro-6.2.iso imageType: iso outputImageName: my-edge-image kubernetes: helm: charts: - name: cert-manager repositoryName: jetstack


    Backporting patches using LLM by jankara

    Description

    Backporting Linux kernel fixes (either for CVE issues or as part of general git-fixes workflow) is boring and mostly mechanical work (dealing with changes in context, renamed variables, new helper functions etc.). The idea of this project is to explore usage of LLM for backporting Linux kernel commits to SUSE kernels using LLM.

    Goals

    • Create safe environment allowing LLM to run and backport patches without exposing the whole filesystem to it (for privacy and security reasons).
    • Write prompt that will guide LLM through the backporting process. Fine tune it based on experimental results.
    • Explore success rate of LLMs when backporting various patches.

    Resources

    • Docker
    • Gemini CLI

    Repository

    Current version of the container with some instructions for use are at: https://gitlab.suse.de/jankara/gemini-cli-backporter


    Docs Navigator MCP: SUSE Edition by mackenzie.techdocs

    MCP Docs Navigator: SUSE Edition

    Description

    Docs Navigator MCP: SUSE Edition is an AI-powered documentation navigator that makes finding information across SUSE, Rancher, K3s, and RKE2 documentation effortless. Built as a Model Context Protocol (MCP) server, it enables semantic search, intelligent Q&A, and documentation summarization using 100% open-source AI models (no API keys required!). The project also allows you to bring your own keys from Anthropic and Open AI for parallel processing.

    Goals

    • [ X ] Build functional MCP server with documentation tools
    • [ X ] Implement semantic search with vector embeddings
    • [ X ] Create user-friendly web interface
    • [ X ] Optimize indexing performance (parallel processing)
    • [ X ] Add SUSE branding and polish UX
    • [ X ] Stretch Goal: Add more documentation sources
    • [ X ] Stretch Goal: Implement document change detection for auto-updates

    Coming Soon!

    • Community Feedback: Test with real users and gather improvement suggestions

    Resources


    Multi-agent AI assistant for Linux troubleshooting by doreilly

    Description

    Explore multi-agent architecture as a way to avoid MCP context rot.

    Having one agent with many tools bloats the context with low-level details about tool descriptions, parameter schemas etc which hurts LLM performance. Instead have many specialised agents, each with just the tools it needs for its role. A top level supervisor agent takes the user prompt and delegates to appropriate sub-agents.

    Goals

    Create an AI assistant with some sub-agents that are specialists at troubleshooting Linux subsystems, e.g. systemd, selinux, firewalld etc. The agents can get information from the system by implementing their own tools with simple function calls, or use tools from MCP servers, e.g. a systemd-agent can use tools from systemd-mcp.

    Example prompts/responses:

    user$ the system seems slow
    assistant$ process foo with pid 12345 is using 1000% cpu ...
    
    user$ I can't connect to the apache webserver
    assistant$ the firewall is blocking http ... you can open the port with firewall-cmd --add-port ...
    

    Resources

    Language Python. The Python ADK is more mature than Golang.

    https://google.github.io/adk-docs/

    https://github.com/djoreilly/linux-helper


    Is SUSE Trending? Popularity and Developer Sentiment Insight Using Native AI Capabilities by terezacerna

    Description

    This project aims to explore the popularity and developer sentiment around SUSE and its technologies compared to Red Hat and their technologies. Using publicly available data sources, I will analyze search trends, developer preferences, repository activity, and media presence. The final outcome will be an interactive Power BI dashboard that provides insights into how SUSE is perceived and discussed across the web and among developers.

    Goals

    1. Assess the popularity of SUSE products and brand compared to Red Hat using Google Trends.
    2. Analyze developer satisfaction and usage trends from the Stack Overflow Developer Survey.
    3. Use the GitHub API to compare SUSE and Red Hat repositories in terms of stars, forks, contributors, and issue activity.
    4. Perform sentiment analysis on GitHub issue comments to measure community tone and engagement using built-in Copilot capabilities.
    5. Perform sentiment analysis on Reddit comments related to SUSE technologies using built-in Copilot capabilities.
    6. Use Gnews.io to track and compare the volume of news articles mentioning SUSE and Red Hat technologies.
    7. Test the integration of Copilot (AI) within Power BI for enhanced data analysis and visualization.
    8. Deliver a comprehensive Power BI report summarizing findings and insights.
    9. Test the full potential of Power BI, including its AI features and native language Q&A.

    Resources

    1. Google Trends: Web scraping for search popularity data
    2. Stack Overflow Developer Survey: For technology popularity and satisfaction comparison
    3. GitHub API: For repository data (stars, forks, contributors, issues, comments).
    4. Gnews.io API: For article volume and mentions analysis.
    5. Reddit: SUSE related topics with comments.


    Exploring Modern AI Trends and Kubernetes-Based AI Infrastructure by jluo

    Description

    Build a solid understanding of the current landscape of Artificial Intelligence and how modern cloud-native technologies—especially Kubernetes—support AI workloads.

    Goals

    Use Gemini Learning Mode to guide the exploration, surface relevant concepts, and structure the learning journey:

    • Gain insight into the latest AI trends, tools, and architectural concepts.
    • Understand how Kubernetes and related cloud-native technologies are used in the AI ecosystem (model training, deployment, orchestration, MLOps).

    Resources

    • Red Hat AI Topic Articles

      • https://www.redhat.com/en/topics/ai
    • Kubeflow Documentation

      • https://www.kubeflow.org/docs/
    • Q4 2025 CNCF Technology Landscape Radar report:

      • https://www.cncf.io/announcements/2025/11/11/cncf-and-slashdata-report-finds-leading-ai-tools-gaining-adoption-in-cloud-native-ecosystems/
      • https://www.cncf.io/wp-content/uploads/2025/11/cncfreporttechradar_111025a.pdf
    • Agent-to-Agent (A2A) Protocol

      • https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/


    Kubernetes-Based ML Lifecycle Automation by lmiranda

    Description

    This project aims to build a complete end-to-end Machine Learning pipeline running entirely on Kubernetes, using Go, and containerized ML components.

    The pipeline will automate the lifecycle of a machine learning model, including:

    • Data ingestion/collection
    • Model training as a Kubernetes Job
    • Model artifact storage in an S3-compatible registry (e.g. Minio)
    • A Go-based deployment controller that automatically deploys new model versions to Kubernetes using Rancher
    • A lightweight inference service that loads and serves the latest model
    • Monitoring of model performance and service health through Prometheus/Grafana

    The outcome is a working prototype of an MLOps workflow that demonstrates how AI workloads can be trained, versioned, deployed, and monitored using the Kubernetes ecosystem.

    Goals

    By the end of Hack Week, the project should:

    1. Produce a fully functional ML pipeline running on Kubernetes with:

      • Data collection job
      • Training job container
      • Storage and versioning of trained models
      • Automated deployment of new model versions
      • Model inference API service
      • Basic monitoring dashboards
    2. Showcase a Go-based deployment automation component, which scans the model registry and automatically generates & applies Kubernetes manifests for new model versions.

    3. Enable continuous improvement by making the system modular and extensible (e.g., additional models, metrics, autoscaling, or drift detection can be added later).

    4. Prepare a short demo explaining the end-to-end process and how new models flow through the system.

    Resources

    Project Repository

    Updates

    1. Training pipeline and datasets
    2. Inference Service py


    Create a Cloud-Native policy engine with notifying capabilities to optimize resource usage by gbazzotti

    Description

    The goal of this project is to begin the initial phase of development of an all-in-one Cloud-Native Policy Engine that notifies resource owners when their resources infringe predetermined policies. This was inspired by a current issue in the CES-SRE Team where other solutions seemed to not exactly correspond to the needs of the specific workloads running on the Public Cloud Team space.

    The initial architecture can be checked out on the Repository listed under Resources.

    Among the features that will differ this project from other monitoring/notification systems:

    • Pre-defined sensible policies written at the software-level, avoiding a learning curve by requiring users to write their own policies
    • All-in-one functionality: logging, mailing and all other actions are not required to install any additional plugins/packages
    • Easy account management, being able to parse all required configuration by a single JSON file
    • Eliminate integrations by not requiring metrics to go through a data-agreggator

    Goals

    • Create a minimal working prototype following the workflow specified on the documentation
    • Provide instructions on installation/usage
    • Work on email notifying capabilities

    Resources