Project Description
Idea is to predefine a set of security policies for popular container applications just for example MySQL, Nginx etc..., with these predefined security policies, users can just download unpack it to use. No need to worry too much about detailed security settings/configurations for this application container. The policies could be any policies that Kubernetes supported and/or NeuVector supported.
Today, there are security policies being supported by Kubernetes like NetworkPolicy, there are extended policies like KubeWarden admission control policies, there are advanced security policy like NeuVector's L7 network policy, process & file policy etc... All these policies are providing functions to secure a Kubernetes environment. From end user point of view, it is good but not convenient enough to use unless users are security experts. So idea is, we could create many predefined security policies for many popular container applications, define these as a Kubernetes standard format like CRD extension just for example. Make these the building blocks coupled with the app images, so when users pull a container, a security policy can be imported at same time. The basic security settings (baseline) will be in place right away. If NeuVector was installed already then the enforcement is in place as well. Most of the users will have basic security in place by doing almost nothing. (of course, if it's necessary, users can still customize or fine tune the predefined templates.)
Security needs to be easy to use but still strong enough to protect, a lot of security postures/configurations/policies could be already defined when this application container image is created. These security manifest is different per apps but it is relatively stable per container as well. So, if we can create or generate security policy templates for popular application images, eventually make some of solid ones a built-in template, or even grow to be a hosted security policy hub. It could be a new critical way to secure Kubernetes world.
Goal for this Hackweek
Study this deeper, choose a few popular applications and make a prototype/demo to proof the concept.
Resources
Some of the policies might not be a good fit to be profiled as manifest. Here we will be focusing on relatively stable application security posture/configuration/runtime policies. Starting point could be look into these:
https://open-docs.neuvector.com/policy/overview
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://docs.kubewarden.io/writing-policies
https://kyverno.io/docs/kyverno-policies/
No Hackers yet
Looking for hackers with the skills:
This project is part of:
Hack Week 23
Activity
Comments
Be the first to comment!
Similar Projects
CVE portal for SUSE Rancher products by gmacedo
Description
Currently it's a bit difficult for users to quickly see the list of CVEs affecting images in Rancher, RKE2, Harvester and Longhorn releases. Users need to individually look for each CVE in the SUSE CVE database page - https://www.suse.com/security/cve/ . This is not optimal, because those CVE pages are a bit hard to read and contain data for all SLE and BCI products too, making it difficult to easily see only the CVEs affecting the latest release of Rancher, for example. We understand that certain costumers are only looking for CVE data for Rancher and not SLE or BCI.
Goals
The objective is to create a simple to read and navigate page that contains only CVE data related to Rancher, RKE2, Harvester and Longhorn, where it's easy to search by a CVE ID, an image name or a release version. The page should also provide the raw data as an exportable CSV file.
It must be an MVP with the minimal amount of effort/time invested, but still providing great value to our users and saving the wasted time that the Rancher Security team needs to spend by manually sharing such data. It might not be long lived, as it can be replaced in 2-3 years with a better SUSE wide solution.
Resources
- The page must be simple and easy to read.
- The UI/UX must be as straightforward as possible with minimal visual noise.
- The content must be created automatically from the raw data that we already have internally.
- It must be updated automatically on a daily basis and on ad-hoc runs (when needed).
- The CVE status must be aligned with VEX.
- The raw data must be exportable as CSV file.
- Ideally it will be written in Go or pure Shell script with basic HTML and no external dependencies in CSS or JS.
Migrate from Docker to Podman by tjyrinki_suse
Description
I'd like to continue my former work on containerization of several domains on a single server by changing from Docker containers to Podman containers. That will need an OS upgrade as well as Podman is not available in that old server version.
Goals
- Update OS.
- Migrate from Docker to Podman.
- Keep everything functional, including the existing "meanwhile done" additional Docker container that is actually being used already.
- Keep everything at least as secure as currently. One of the reasons of having the containers is to isolate risks related to services open to public Internet.
- Try to enable the Podman use in production.
- At minimum, learn about all of these topics.
- Optionally, improve Ansible side of things as well...
Resources
A search engine is one's friend. Migrating from Docker to Podman, and from docker-compose to podman-compose.
Bot to identify reserved data leak in local files or when publishing on remote repository by mdati
Description
Scope here is to prevent reserved data or generally "unwanted", to be pushed and saved on a public repository, i.e. on Github, causing disclosure or leaking of reserved informations.
The above definition of reserved or "unwanted" may vary, depending on the context: sometime secret keys or password are stored in data or configuration files or hardcoded in source code and depending on the scope of the archive or the level of security, it can be either wanted, permitted or not at all.
As main target here, secrets will be registration keys or passwords, to be detected and managed locally or in a C.I. pipeline.
Goals
Detection:
- Local detection: detect secret words present in local files;
- Remote detection: detect secrets in files, in pipelines, going to be transferred on a remote repository, i.e. via
git push
;
Reporting:
- report the result of detection on stderr and/or log files, noticed excluding the secret values.
Acton:
- Manage the detection, by either deleting or masking the impacted code or deleting/moving the file itself or simply notify it.
Resources
- Project repository, published on Github (link): m-dati/hkwk24;
- Reference folder: hkwk24/chksecret;
- First pull request (link): PR#1;
- Second PR, for improvements: PR#2;
- README.md and TESTS.md documentation files available in the repo root;
- Test subproject repository, for testing CI on push [TBD].
Notes
We use here some examples of secret words, that still can be improved.
The various patterns to match desired reserved words are written in a separated module, to be on demand updated or customized.
[Legend: TBD = to be done]
Kanidm: A safe and modern IDM system by firstyear
Kanidm is an IDM system written in Rust for modern systems authentication. The github repo has a detailed "getting started" on the readme.
In addition Kanidm has spawn a number of adjacent projects in the Rust ecosystem such as LDAP, Kerberos, Webauthn, and cryptography libraries.
In this hack week, we'll be working on Quokca, a certificate authority that supports PKCS11/TPM storage of keys, issuance of PIV certificates, and ACME without the feature gatekeeping implemented by other CA's like smallstep.
For anyone who wants to participate in Kanidm, we have documentation and developer guides which can help.
I'm happy to help and share more, so please get in touch!
Model checking the BPF verifier by shunghsiyu
Project Description
BPF verifier plays a crucial role in securing the system (though less so now that unprivileged BPF is disabled by default in both upstream and SLES), and bugs in the verifier has lead to privilege escalation vulnerabilities in the past (e.g. CVE-2021-3490).
One way to check whether the verifer has bugs to use model checking (a formal verification technique), in other words, build a abstract model of how the verifier operates, and then see if certain condition can occur (e.g. incorrect calculation during value tracking of registers) by giving both the model and condition to a solver.
For the solver I will be using the Z3 SMT solver to do the checking since it provide a Python binding that's relatively easy to use.
Goal for this Hackweek
Learn how to use the Z3 Python binding (i.e. Z3Py) to build a model of (part of) the BPF verifier, probably the part that's related to value tracking using tristate numbers (aka tnum), and then check that the algorithm work as intended.
Resources
- Formal Methods for the Informal Engineer: Tutorial #1 - The Z3 Theorem Prover and its accompanying notebook is a great introduction into Z3
- Has a section specifically on model checking
- Software Verification and Analysis Using Z3 a great example of using Z3 for model checking
- Sound, Precise, and Fast Abstract Interpretation with Tristate Numbers - existing work that use formal verification to prove that the multiplication helper used for value tracking work as intended
- [PATCH v5 net-next 00/12] bpf: rewrite value tracking in verifier - initial patch set that adds tristate number to the verifier
ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini
Description
ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration
and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal
or local installations. However, the goal is to expand its use to encompass all installations of
Kubernetes for local development purposes.
It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based
configuration config.yml
.
Overview
- Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
- Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
- Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
- Extensibility: Easily extend functionality with custom plugins and configurations.
- Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
- Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.
Features
- distribution and engine independence. Install your favorite kubernetes engine with your package
manager, execute one script and you'll have a complete working environment at your disposal.
- Basic config approach. One single
config.yml
file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...). - Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
- Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
- Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
- One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
- Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.
Planned features (Wishlist / TODOs)
- Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for
Harvester Packer Plugin by mrohrich
Description
Hashicorp Packer is an automation tool that allows automatic customized VM image builds - assuming the user has a virtualization tool at their disposal. To make use of Harvester as such a virtualization tool a plugin for Packer needs to be written. With this plugin users could make use of their Harvester cluster to build customized VM images, something they likely want to do if they have a Harvester cluster.
Goals
Write a Packer plugin bridging the gap between Harvester and Packer. Users should be able to create customized VM images using Packer and Harvester with no need to utilize another virtualization platform.
Resources
Hashicorp documentation for building custom plugins for Packer https://developer.hashicorp.com/packer/docs/plugins/creation/custom-builders
Source repository of the Harvester Packer plugin https://github.com/m-ildefons/harvester-packer-plugin
Metrics Server viewer for Kubernetes by bkampen
This project is finished please visit the github repo below for the tool.
Description
Build a CLI tools which can visualize Kubernetes metrics from the metrics-server, so you're able to watch these without installing Prometheus and Grafana on a cluster.
Goals
- Learn more about metrics-server
- Learn more about the inner workings of Kubernetes.
- Learn more about Go
Resources
https://github.com/bvankampen/metrics-viewer
Multi-pod, autoscalable Elixir application in Kubernetes using K8s resources by socon
Description
Elixir / Erlang use their own solutions to create clusters that work together. Kubernetes provide its own orchestration. Due to the nature of the BEAM, it looks a very promising technology for applications that run in Kubernetes and requite to be always on, specifically if they are created as web pages using Phoenix.
Goals
- Investigate and provide solutions that work in Phoenix LiveView using Kubernetes resources, so a multi-pod application can be used
- Provide an end to end example that creates and deploy a container from source code.
Resources
https://github.com/dwyl/phoenix-liveview-counter-tutorial https://github.com/propedeutica/elixir-k8s-counter
A CLI for Harvester by mohamed.belgaied
[comment]: # Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI [comment]: # Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. [comment]: # Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.
Project Description
Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as:
harvester vm create my-vm --count 5
to create 5 VMs named my-vm-01
to my-vm-05
.
Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.
Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli
Done in previous Hackweeks
- Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
- Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE
Goal for this Hackweek
The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.
Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it
Issue list is here: https://github.com/belgaied2/harvester-cli/issues
Resources
The project is written in Go, and using client-go
the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact).
Welcome contributions are:
- Testing it and creating issues
- Documentation
- Go code improvement
What you might learn
Harvester CLI might be interesting to you if you want to learn more about:
- GitHub Actions
- Harvester as a SUSE Product
- Go programming language
- Kubernetes API
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
ADS-B receiver with MicroOS by epaolantonio
I would like to put one of my spare Raspberry Pis to good use, and what better way to see what flies above my head at any time?
There are various ready-to-use distros already set-up to provide feeder data to platforms like Flightradar24, ADS-B Exchange, FlightAware etc... The goal here would be to do it using MicroOS as a base and containerized decoding of ADS-B data (via tools like dump1090
) and web frontend (tar1090
).
Goals
- Create a working receiver using MicroOS as a base, and containers based on Tumbleweed
- Make it easy to install
- Optimize for maximum laziness (i.e. it should take care of itself with minimum intervention)
Resources
- 1x Small Board Computer capable of running MicroOS
- 1x RTL2832U DVB-T dongle
- 1x MicroSD card
- https://github.com/antirez/dump1090
- https://github.com/flightaware/dump1090 (dump1090 fork by FlightAware)
- https://github.com/wiedehopf/tar1090
Project status (2024-11-22)
So I'd say that I'm pretty satisfied with how it turned out. I've packaged readsb
(as a replacement for dump1090
), tar1090
, tar1090-db
and mlat-client
(not used yet).
Current status:
- Able to set-up a working receiver using combustion+ignition (web app based on Fuel Ignition)
- Able to feed to various feeds using the Beast protocol (Airplanes.live, ADSB.fi, ADSB.lol, ADSBExchange.com, Flyitalyadsb.com, Planespotters.net)
- Able to feed to Flightradar24 (initial-setup available but NOT tested! I've only tested using a key I already had)
- Local web interface (tar1090) to easily visualize the results
- Cockpit pre-configured to ease maintenance
What's missing:
- MLAT (Multilateration) support. I've packaged mlat-client already, but I have to wire it up
- FlightAware support
Give it a go at https://g7.github.io/adsbreceiver/ !
Project links
- https://g7.github.io/adsbreceiver/
- https://github.com/g7/adsbreceiver
- https://build.opensuse.org/project/show/home:epaolantonio:adsbreceiver
Port the classic browser game HackTheNet to PHP 8 by dgedon
Description
The classic browser game HackTheNet from 2004 still runs on PHP 4/5 and MySQL 5 and needs a port to PHP 8 and e.g. MariaDB.
Goals
- Port the game to PHP 8 and MariaDB 11
- Create a container where the game server can simply be started/stopped
Resources
- https://github.com/nodeg/hackthenet
Technical talks at universities by agamez
Description
This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.
For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.
Goals
- Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
- Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
- Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.
Resources
- Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
- SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.
Improve Development Environment on Uyuni by mbussolotto
Description
Currently create a dev environment on Uyuni might be complicated. The steps are:
- add the correct repo
- download packages
- configure your IDE (checkstyle, format rules, sonarlint....)
- setup debug environment
- ...
The current doc can be improved: some information are hard to be find out, some others are completely missing.
Dev Container might solve this situation.
Goals
Uyuni development in no time:
- using VSCode:
- setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
- dev container should contains all dependencies
- setup debug environment
- implement a GitHub Workspace solution
- re-write documentation
Lots of pieces are already implemented: we need to connect them in a consistent solution.
Resources
- https://github.com/uyuni-project/uyuni/wiki
Cluster API Add-on Provider for Kubewarden by csalas
Description
Can we integrate Kubewarden with Cluster API provisioning?
Cluster API is a Kubernetes project focused on providing declarative APIs and tooling to simplify provisioning, upgrading, and operating multiple Kubernetes clusters. TLDR; CAPI let's you define Kubernetes clusters in plain YAML, and CAPI providers (infrastructure, control plane/bootstrap, etc.) manage provisioning and configuration for you.
What if we could create an add-on provider that automatically installs Kubewarden and deploys Policy Servers to CAPI clusters?
Goals
- As a user I'd like to set a cluster (or list of clusters) and have the provider install Kubewarden for me.
- As a user I'd like to set what policies must be enforced for a cluster (or list of clusters).
Resources
- Cluster API: https://cluster-api.sigs.k8s.io/
- Kubewarden: https://docs.kubewarden.io/