There are couple of projects I work on, which need my attention and putting them to shape:
Goal for this Hackweek
Put M2Crypto into better shape (most issues closed, all pull requests processed)
This project is part of:
Hack Week 20 Hack Week 22
Activity
Comments
-
almost 2 years ago by asmorodskyi | Reply
I have mid-level python knowledge and basic OBS knowledge and close to zero knowledge about encryption algorithms . I can try to fix some python-specific problem within package or try to do some packaging task in OBS . Can you recommend me something certain ?
-
almost 2 years ago by mcepl | Reply
There was actually some progress on this project:
master
branch now passes the test suite through on all platforms (including Windows! hint: I don’t have one ;)), and the release of the next milestone is blocked just by https://gitlab.com/m2crypto/m2crypto/-/merge_requests/234 not passing through one test. If anybody knows anything about HTTPTransfer-Encoding: chunked
and she is willing to help, I am all ears!
Similar Projects
A sane DSL for udev rules by mwilck
Description
The "language" in which udev rules are written as documented in udev(7) is horrible. To name just a few problems:
- The only control statements are
LABEL
andGOTO
. - Conditionals are the most important part of the language, but it supports only conjunction ("AND"), forcing developers to use
GOTO
even for simple "OR" relations. - The AND operation is denoted by a comma (
,
). - Conventions for quoting are weird.
- There aren't even basic string handling facilities.
- There is no API for passing flags between different rule sets, just a set of global environment variables.
- Environment variales are written in
ENV{FOO}
when assigned to, but$env{FOO}
or%E{FOO}
when dereferenced.
While this is ok-ish for the simple set of tasks the language was originally intended for, it makes larger rule sets with complex logic almost impossible to read and understand. Examples for such complex rule sets are the device-mapper and multipath rules.
While working on the multipath rule sets a few weeks ago, I found myself desparately translating the rules into some pythonesque pseudo-code in order to make sure I fully understand the code flow.
This project wants to explore the possibilities to replace this weird DSL with something saner. The idea is to embed Lua in udev, and rewrite the udev rule sets as Lua modules.
It's meant as a fun project that may have practical merits. I am aware that it's questionable whether the systemd maintainers are going to embrace this. I think it will only have a tiny chance if it really improves readability of rules massively, while impacting neither performance nor code size too badly. I have good hopes in terms of performance as Lua has the reputation to be fast, but code size will of course increase, and so will the list of dependencies of systemd.
Goals
- Learn how to write Lua, and how to embed it in C code and write C modules for it. I've read the manual, but I can't say that I'm fluent with it yet.
- Design an API for udev in Lua. Figure out how to expose status like device properties (environment variables), tags, and other variables like
ACTION
andSUBSYSTEM
to Lua code, and tentatively re-write a set of representative rule sets in this new DSL. This may need several attempts until the rules can be written in an intuitive way. - Create the basic framework for embedding Lua in udev and providing the environment for the Lua code.
- Write libraries with helper funtions to be used by the Lua. For example, we'll need code to access sysfs in order to provide
ATTRS
and similar features of udev. I'm not certain yet but for most of this it will probably make sense to write the code in C and make it callable by Lua, as udev already has powerful mechanisms for accessing sysfs attributes. - One problem is that the Lua standard library provides
getenv
but notsetenv
. We need to be able to set environment variables in order to work with external programs to replicate the functionality of thePROGRAM
andIMPORT{program}
directives. - Eventually, make the entire feature set of the udev language available.
- Eventually, rewrite the entire set of upstream rules (to the extent we're aware of) in Lua.
- While I'd love trash the original language, I guess it needs to continue to exist.
Symbol Relations by hli
Description
There are tools to build function call graphs based on parsing source code, for example, cscope
.
This project aims to achieve a similar goal by directly parsing the disasembly (i.e. objdump) of a compiled binary. The assembly code is what the CPU sees, therefore more "direct". This may be useful in certain scenarios, such as gdb/crash debugging.
Detailed description and Demos can be found in the README file:
Supports x86 for now (because my customers only use x86 machines), but support for other architectures can be added easily.
Tested with python3.6
Goals
Any comments are welcome.
Resources
https://github.com/lhb-cafe/SymbolRelations
symrellib.py: mplements the symbol relation graph and the disassembly parser
symrel_tracer*.py: implements tracing (-t option)
symrel.py: "cli parser"
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini
Description
ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration
and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal
or local installations. However, the goal is to expand its use to encompass all installations of
Kubernetes for local development purposes.
It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based
configuration config.yml
.
Overview
- Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
- Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
- Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
- Extensibility: Easily extend functionality with custom plugins and configurations.
- Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
- Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.
Features
- distribution and engine independence. Install your favorite kubernetes engine with your package
manager, execute one script and you'll have a complete working environment at your disposal.
- Basic config approach. One single
config.yml
file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...). - Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
- Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
- Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
- One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
- Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.
Planned features (Wishlist / TODOs)
- Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for
Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil
Join the Gitter channel! https://gitter.im/uyuni-project/hackweek
Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!
Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.
For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.
No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)
The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.
To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):
- Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
- Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
- Package management (install, remove, update...)
- Patching
- Applying any basic salt state (including a formula)
- Salt remote commands
- Bonus point: Java part for product identification, and monitoring enablement
- Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
- Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
- Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)
If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)
- If you don't have knowledge about some of the steps: ask the team
- If you still don't know what to do: switch to another distribution and keep testing.
This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)
Pending
FUSS
FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.
https://fuss.bz.it/
Seems to be a Debian 12 derivative, so adding it could be quite easy.
[x]
Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)[P]
Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator) --> Works from UI, need to test the rest.[P]
Package management (install, remove, update...) --> Installing a new package works, needs to test the rest.[ ]
Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already)[ ]
Applying any basic salt state (including a formula)[ ]
Salt remote commands[ ]
Bonus point: Java part for product identification, and monitoring enablement
Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez
Description
Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.
Goals
- Explore Ollama
- Test different models
- Fine tuning
- Explore possible integration in Uyuni
Resources
- https://ollama.com/
- https://huggingface.co/
- https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/