Project Description

BPF verifier plays a crucial role in securing the system (though less so now that unprivileged BPF is disabled by default in both upstream and SLES), and bugs in the verifier has lead to privilege escalation vulnerabilities in the past (e.g. CVE-2021-3490).

One way to check whether the verifer has bugs to use model checking (a formal verification technique), in other words, build a abstract model of how the verifier operates, and then see if certain condition can occur (e.g. incorrect calculation during value tracking of registers) by giving both the model and condition to a solver.

For the solver I will be using the Z3 SMT solver to do the checking since it provide a Python binding that's relatively easy to use.

Goal for this Hackweek

Learn how to use the Z3 Python binding (i.e. Z3Py) to build a model of (part of) the BPF verifier, probably the part that's related to value tracking using tristate numbers (aka tnum), and then check that the algorithm work as intended.

Resources

Looking for hackers with the skills:

bpf ebpf formalverification modelchecking kernel security

This project is part of:

Hack Week 21 Hack Week 23 Hack Week 24

Activity

  • about 1 month ago: janvhs liked this project.
  • about 1 month ago: flonnegren liked this project.
  • about 1 month ago: vliaskovitis liked this project.
  • about 2 months ago: r1chard-lyu liked this project.
  • about 1 year ago: moio liked this project.
  • over 2 years ago: dsterba liked this project.
  • over 2 years ago: mbrugger liked this project.
  • over 2 years ago: jzerebecki left this project.
  • over 2 years ago: jzerebecki added keyword "security" to this project.
  • over 2 years ago: jzerebecki joined this project.
  • over 2 years ago: jzerebecki liked this project.
  • over 2 years ago: ailiopoulos liked this project.
  • over 2 years ago: shunghsiyu started this project.
  • over 2 years ago: shunghsiyu added keyword "kernel" to this project.
  • over 2 years ago: shunghsiyu added keyword "bpf" to this project.
  • over 2 years ago: shunghsiyu added keyword "ebpf" to this project.
  • over 2 years ago: shunghsiyu added keyword "formalverification" to this project.
  • over 2 years ago: shunghsiyu added keyword "modelchecking" to this project.
  • over 2 years ago: shunghsiyu originated this project.

  • Comments

    • shunghsiyu
      over 2 years ago by shunghsiyu | Reply

      I've uploaded the jupyter notebook on GitHub that contains a minimal model of tnum along with tnum_add(), as well as the prove that it works.

    • shunghsiyu
      over 2 years ago by shunghsiyu | Reply

      The slides used for lightning talk can be found here

      While I'd like to achieve much more, I think what I've done during hack week is suffice to be called a complete project, so I'm marking this as complete

    • shunghsiyu
      about 1 year ago by shunghsiyu | Reply

      I'm restarting this project to model check the range tracking (minimal and maximal value possible in s32/u32/u64/s64 range) done in BPF verifier.

      In addition to that I hope to unify signed and unsigned range tracking based on previously posted idea and the "Interval Analysis and Machine Arithmetic: Why Signedness Ignorance Is Bliss" paper for simpler range tracking code.

    Similar Projects

    Tracing system calls with eBPF by doreilly

    Description

    Many security tools need to record system calls like execve. Using the Linux audit system for this can have a detrimental performance impact in some cases.

    Goals

    The goal is to investigate eBPF as an alternative and do some benchmarking to see the impact and how it compares to using the audit subsystem.

    Progress

    BPF done - traceexec

    Benchmark report

    Resources

    eBPF doc

    libbpf

    libMicro benchmark tool


    Tracing system calls with eBPF by doreilly

    Description

    Many security tools need to record system calls like execve. Using the Linux audit system for this can have a detrimental performance impact in some cases.

    Goals

    The goal is to investigate eBPF as an alternative and do some benchmarking to see the impact and how it compares to using the audit subsystem.

    Progress

    BPF done - traceexec

    Benchmark report

    Resources

    eBPF doc

    libbpf

    libMicro benchmark tool


    Modernize ocfs2 by goldwynr

    Ocfs2 has gone into a stage of neglect and disrepair. Modernize the code to generate enough interest.

    Goals: * Change the mount sequence to use fscontext * Move from using bufferhead to bio/folios * Use iomap * Run it through xfstests


    Linux on Cavium CN23XX cards by tsbogend

    Before Cavium switched to ARM64 CPUs they developed quite powerful MIPS based SOCs. The current upstream Linux kernel already supports some Octeon SOCs, but not the latest versions. Goal of this Hack Week project is to use the latest Cavium SDK to update the Linux kernel code to let it running on CN23XX network cards.


    Kill DMA and DMA32 memory zones by ptesarik

    Description

    Provide a better allocator for DMA-capable buffers, making the DMA and DMA32 zones obsolete.

    Goals

    Make a PoC kernel which can boot a x86 VM and a Raspberry Pi (because early RPi4 boards have some of the weirdest DMA constraints).

    Resources

    • LPC2024 talk:
    • video:


    Hacking on sched_ext by flonnegren

    Description

    Sched_ext upstream has some interesting issues open for grabs:

    Goals

    Send patches to sched_ext upstream

    Also set up perfetto to trace some of the example schedulers.

    Resources

    https://github.com/sched-ext/scx


    Modularization and Modernization of cifs.ko for Enhanced SMB Protocol Support by hcarvalho

    Creator:
    Enzo Matsumiya ematsumiya@suse.de @ SUSE Samba team
    Members:
    Henrique Carvalho henrique.carvalho@suse.com @ SUSE Samba team

    Description

    Split cifs.ko in 2 separate modules; one for SMB 1.0 and 2.0.x, and another for SMB 2.1, 3.0, and 3.1.1.

    Goals

    Primary

    Start phasing out/deprecation of older SMB versions

    Secondary

    • Clean up of the code (with focus on the newer versions)
    • Update cifs-utils
    • Update documentation
    • Improve backport workflow (see below)

    Technical details

    Ideas for the implementation.

    • fs/smb/client/{old,new}.c to generate the respective modules
      • Maybe don't create separate folders? (re-evaluate as things progresses!)
    • Remove server->{ops,vals} if possible
    • Clean up fs_context.* -- merge duplicate options into one, handle them in userspace utils
    • Reduce code in smb2pdu.c -- tons of functions with very similar init/setup -> send/recv -> handle/free flow
    • Restructure multichannel
      • Treat initial connection as "channel 0" regardless of multichannel enabled/negotiated status, proceed with extra channels accordingly
      • Extra channel just point to "channel 0" as the primary server, no need to allocate an extra TCPServerInfo for each one
    • Authentication mechanisms
      • Modernize algorithms (references: himmelblau, IAKERB/Local KDC, SCRAM, oauth2 (Azure), etc.


    Bot to identify reserved data leak in local files or when publishing on remote repository by mdati

    Description

    Scope here is to prevent reserved data or generally "unwanted", to be pushed and saved on a public repository, i.e. on Github, causing disclosure or leaking of reserved informations.

    The above definition of reserved or "unwanted" may vary, depending on the context: sometime secret keys or password are stored in data or configuration files or hardcoded in source code and depending on the scope of the archive or the level of security, it can be either wanted, permitted or not at all.

    As main target here, secrets will be registration keys or passwords, to be detected and managed locally or in a C.I. pipeline.

    Goals

    • Detection:

      • Local detection: detect secret words present in local files;
      • Remote detection: detect secrets in files, in pipelines, going to be transferred on a remote repository, i.e. via git push;
    • Reporting:

      • report the result of detection on stderr and/or log files, noticed excluding the secret values.
    • Acton:

      • Manage the detection, by either deleting or masking the impacted code or deleting/moving the file itself or simply notify it.

    Resources

    • Project repository, published on Github (link): m-dati/hkwk24;
    • Reference folder: hkwk24/chksecret;
    • First pull request (link): PR#1;
    • Second PR, for improvements: PR#2;
    • README.md and TESTS.md documentation files available in the repo root;
    • Test subproject repository, for testing CI on push [TBD].

    Notes

    We use here some examples of secret words, that still can be improved.
    The various patterns to match desired reserved words are written in a separated module, to be on demand updated or customized.

    [Legend: TBD = to be done]


    VulnHeap by r1chard-lyu

    Description

    The VulnHeap project is dedicated to the in-depth analysis and exploitation of vulnerabilities within heap memory management. It focuses on understanding the intricate workflow of heap allocation, chunk structures, and bin management, which are essential to identifying and mitigating security risks.

    Goals

    • Familiarize with heap
      • Heap workflow
      • Chunk and bin structure
      • Vulnerabilities
    • Vulnerability
      • Use after free (UAF)
      • Heap overflow
      • Double free
    • Use Docker to create a vulnerable environment and apply techniques to exploit it

    Resources

    • https://heap-exploitation.dhavalkapil.com/divingintoglibc_heap
    • https://raw.githubusercontent.com/cloudburst/libheap/master/heap.png
    • https://github.com/shellphish/how2heap?tab=readme-ov-file


    CVE portal for SUSE Rancher products by gmacedo

    Description

    Currently it's a bit difficult for users to quickly see the list of CVEs affecting images in Rancher, RKE2, Harvester and Longhorn releases. Users need to individually look for each CVE in the SUSE CVE database page - https://www.suse.com/security/cve/ . This is not optimal, because those CVE pages are a bit hard to read and contain data for all SLE and BCI products too, making it difficult to easily see only the CVEs affecting the latest release of Rancher, for example. We understand that certain costumers are only looking for CVE data for Rancher and not SLE or BCI.

    Goals

    The objective is to create a simple to read and navigate page that contains only CVE data related to Rancher, RKE2, Harvester and Longhorn, where it's easy to search by a CVE ID, an image name or a release version. The page should also provide the raw data as an exportable CSV file.

    It must be an MVP with the minimal amount of effort/time invested, but still providing great value to our users and saving the wasted time that the Rancher Security team needs to spend by manually sharing such data. It might not be long lived, as it can be replaced in 2-3 years with a better SUSE wide solution.

    Resources

    • The page must be simple and easy to read.
    • The UI/UX must be as straightforward as possible with minimal visual noise.
    • The content must be created automatically from the raw data that we already have internally.
    • It must be updated automatically on a daily basis and on ad-hoc runs (when needed).
    • The CVE status must be aligned with VEX.
    • The raw data must be exportable as CSV file.
    • Ideally it will be written in Go or pure Shell script with basic HTML and no external dependencies in CSS or JS.


    OIDC Loginproxy by toe

    Description

    Reverse proxies can be a useful option to separate authentication logic from application logic. SUSE and openSUSE use "loginproxies" as an authentication layer in front of several services.

    Currently, loginproxies exist which support LDAP authentication or SAML authentication.

    Goals

    The goal of this Hack Week project is, to create another loginproxy which supports OpenID Connect authentication which can then act as a drop-in replacement for the existing LDAP or SAML loginproxies.

    Testing is intended to focus on the integration with OIDC IDPs from Okta, KanIDM and Authentik.

    Resources


    Kanidm: A safe and modern IDM system by firstyear

    Kanidm is an IDM system written in Rust for modern systems authentication. The github repo has a detailed "getting started" on the readme.

    Kanidm Github

    In addition Kanidm has spawn a number of adjacent projects in the Rust ecosystem such as LDAP, Kerberos, Webauthn, and cryptography libraries.

    In this hack week, we'll be working on Quokca, a certificate authority that supports PKCS11/TPM storage of keys, issuance of PIV certificates, and ACME without the feature gatekeeping implemented by other CA's like smallstep.

    For anyone who wants to participate in Kanidm, we have documentation and developer guides which can help.

    I'm happy to help and share more, so please get in touch!