Project Description

BPF verifier plays a crucial role in securing the system (though less so now that unprivileged BPF is disabled by default in both upstream and SLES), and bugs in the verifier has lead to privilege escalation vulnerabilities in the past (e.g. CVE-2021-3490).

One way to check whether the verifer has bugs to use model checking (a formal verification technique), in other words, build a abstract model of how the verifier operates, and then see if certain condition can occur (e.g. incorrect calculation during value tracking of registers) by giving both the model and condition to a solver.

For the solver I will be using the Z3 SMT solver to do the checking since it provide a Python binding that's relatively easy to use.

Goal for this Hackweek

Learn how to use the Z3 Python binding (i.e. Z3Py) to build a model of (part of) the BPF verifier, probably the part that's related to value tracking using tristate numbers (aka tnum), and then check that the algorithm work as intended.

Resources

Looking for hackers with the skills:

bpf ebpf formalverification modelchecking kernel security

This project is part of:

Hack Week 21 Hack Week 23 Hack Week 24

Activity

  • 7 months ago: janvhs liked this project.
  • 7 months ago: flonnegren liked this project.
  • 7 months ago: vliaskovitis liked this project.
  • 8 months ago: r1chard-lyu liked this project.
  • over 1 year ago: moio liked this project.
  • almost 3 years ago: dsterba liked this project.
  • almost 3 years ago: mbrugger liked this project.
  • almost 3 years ago: jzerebecki left this project.
  • almost 3 years ago: jzerebecki added keyword "security" to this project.
  • almost 3 years ago: jzerebecki joined this project.
  • almost 3 years ago: jzerebecki liked this project.
  • almost 3 years ago: ailiopoulos liked this project.
  • almost 3 years ago: shunghsiyu started this project.
  • almost 3 years ago: shunghsiyu added keyword "kernel" to this project.
  • almost 3 years ago: shunghsiyu added keyword "bpf" to this project.
  • almost 3 years ago: shunghsiyu added keyword "ebpf" to this project.
  • almost 3 years ago: shunghsiyu added keyword "formalverification" to this project.
  • almost 3 years ago: shunghsiyu added keyword "modelchecking" to this project.
  • almost 3 years ago: shunghsiyu originated this project.

  • Comments

    • shunghsiyu
      almost 3 years ago by shunghsiyu | Reply

      I've uploaded the jupyter notebook on GitHub that contains a minimal model of tnum along with tnum_add(), as well as the prove that it works.

    • shunghsiyu
      almost 3 years ago by shunghsiyu | Reply

      The slides used for lightning talk can be found here

      While I'd like to achieve much more, I think what I've done during hack week is suffice to be called a complete project, so I'm marking this as complete

    • shunghsiyu
      over 1 year ago by shunghsiyu | Reply

      I'm restarting this project to model check the range tracking (minimal and maximal value possible in s32/u32/u64/s64 range) done in BPF verifier.

      In addition to that I hope to unify signed and unsigned range tracking based on previously posted idea and the "Interval Analysis and Machine Arithmetic: Why Signedness Ignorance Is Bliss" paper for simpler range tracking code.

    • rubylee
      3 days ago by rubylee | Reply

      Model checking the BPF verifier is crucial for ensuring system safety and reliability—much like verifying the lute instrument price before buying, it’s about making sure everything checks out before trusting the result.

    Similar Projects

    early stage kdump support by mbrugger

    Project Description

    When we experience a early boot crash, we are not able to analyze the kernel dump, as user-space wasn't able to load the crash system. The idea is to make the crash system compiled into the host kernel (think of initramfs) so that we can create a kernel dump really early in the boot process.

    Goal for the Hackweeks

    1. Investigate if this is possible and the implications it would have (done in HW21)
    2. Hack up a PoC (done in HW22 and HW23)
    3. Prepare RFC series (giving it's only one week, we are entering wishful thinking territory here).

    update HW23

    • I was able to include the crash kernel into the kernel Image.
    • I'll need to find a way to load that from init/main.c:start_kernel() probably after kcsan_init()
    • I workaround for a smoke test was to hack kexec_file_load() systemcall which has two problems:
      1. My initramfs in the porduction kernel does not have a new enough kexec version, that's not a blocker but where the week ended
      2. As the crash kernel is part of init.data it will be already stale once I can call kexec_file_load() from user-space.

    The solution is probably to rewrite the POC so that the invocation can be done from init.text (that's my theory) but I'm not sure if I can reuse the kexec infrastructure in the kernel from there, which I rely on heavily.

    update HW24

    • Day1
      • rebased on v6.12 with no problems others then me breaking the config
      • setting up a new compilation and qemu/virtme env
      • getting desperate as nothing works that used to work
    • Day 2
      • getting to call the invocation of loading the early kernel from __init after kcsan_init()
    • Day 3

      • fix problem of memdup not being able to alloc so much memory... use 64K page sizes for now
      • code refactoring
      • I'm now able to load the crash kernel
      • When using virtme I can boot into the crash kernel, also it doesn't boot completely (major milestone!), crash in elfcorehdr_read_notes()
    • Day 4

      • crash systems crashes (no pun intended) in copy_old_mempage() link; will need to understand elfcorehdr...
      • call path vmcore_init() -> parse_crash_elf_headers() -> elfcorehdr_read() -> read_from_oldmem() -> copy_oldmem_page() -> copy_to_iter()
    • Day 5

      • hacking arch/arm64/kernel/crash_dump.c:copy_old_mempage() to see if crash system really starts. It does.
      • fun fact: retested with more reserved memory and with UEFI FW, host kernel crashes in init but directly starts the crash kernel, so it works (somehow) \o/
    • TODOs

      • fix elfcorehdr so that we actually can make use of all this...
      • test where in the boot __init() chain we can/should call kexec_early_dump()