Description

I'm implementing a split-horizon DNS for my home Kubernetes cluster to be able to access my internal (and external) services over the local network through public domains. I managed to make a PoC with the k8s_gateway plugin for CoreDNS. However, I soon found out it responds with IPs for all Gateways assigned to HTTPRoutes, publishing public IPs as well as the internal Loadbalancer ones.

To remedy this issue, a simple filtering mechanism has to be implemented.

Goals

  • Learn an acceptable amount of Golang
  • Implement GatewayClass (and IngressClass) filtering for k8s_gateway
  • Deploy on homelab cluster
  • Profit?

Resources

EDIT: Feature mostly complete. An unfinished PR lies here. Successfully tested working on homelab cluster.

Looking for hackers with the skills:

kubernetes golang dns

This project is part of:

Hack Week 24

Activity

  • about 1 year ago: jmeza liked this project.
  • about 1 year ago: paulgonin liked this project.
  • about 1 year ago: pdostal liked this project.
  • about 1 year ago: fgiudici liked this project.
  • about 1 year ago: parag.jain joined this project.
  • about 1 year ago: jkuzilek added keyword "dns" to this project.
  • about 1 year ago: jkuzilek added keyword "golang" to this project.
  • about 1 year ago: jkuzilek added keyword "kubernetes" to this project.
  • about 1 year ago: jkuzilek started this project.
  • about 1 year ago: jkuzilek originated this project.

  • Comments

    • parag.jain
      about 1 year ago by parag.jain | Reply

      I am interested!! Can I join ?

      • jkuzilek
        about 1 year ago by jkuzilek | Reply

        Sorry, unfortunately, I already managed to finish most of the task and created a PR. Didn't take that much work as I thought.

    Similar Projects

    Exploring Modern AI Trends and Kubernetes-Based AI Infrastructure by jluo

    Description

    Build a solid understanding of the current landscape of Artificial Intelligence and how modern cloud-native technologies—especially Kubernetes—support AI workloads.

    Goals

    Use Gemini Learning Mode to guide the exploration, surface relevant concepts, and structure the learning journey:

    • Gain insight into the latest AI trends, tools, and architectural concepts.
    • Understand how Kubernetes and related cloud-native technologies are used in the AI ecosystem (model training, deployment, orchestration, MLOps).

    Resources

    • Red Hat AI Topic Articles

      • https://www.redhat.com/en/topics/ai
    • Kubeflow Documentation

      • https://www.kubeflow.org/docs/
    • Q4 2025 CNCF Technology Landscape Radar report:

      • https://www.cncf.io/announcements/2025/11/11/cncf-and-slashdata-report-finds-leading-ai-tools-gaining-adoption-in-cloud-native-ecosystems/
      • https://www.cncf.io/wp-content/uploads/2025/11/cncfreporttechradar_111025a.pdf
    • Agent-to-Agent (A2A) Protocol

      • https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/


    Rancher/k8s Trouble-Maker by tonyhansen

    Project Description

    When studying for my RHCSA, I found trouble-maker, which is a program that breaks a Linux OS and requires you to fix it. I want to create something similar for Rancher/k8s that can allow for troubleshooting an unknown environment.

    Goals for Hackweek 25

    • Update to modern Rancher and verify that existing tests still work
    • Change testing logic to populate secrets instead of requiring a secondary script
    • Add new tests

    Goals for Hackweek 24 (Complete)

    • Create a basic framework for creating Rancher/k8s cluster lab environments as needed for the Break/Fix
    • Create at least 5 modules that can be applied to the cluster and require troubleshooting

    Resources

    • https://github.com/celidon/rancher-troublemaker
    • https://github.com/rancher/terraform-provider-rancher2
    • https://github.com/rancher/tf-rancher-up
    • https://github.com/rancher/quickstart


    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.


    Self-Scaling LLM Infrastructure Powered by Rancher by ademicev0

    Self-Scaling LLM Infrastructure Powered by Rancher

    logo


    Description

    The Problem

    Running LLMs can get expensive and complex pretty quickly.

    Today there are typically two choices:

    1. Use cloud APIs like OpenAI or Anthropic. Easy to start with, but costs add up at scale.
    2. Self-host everything - set up Kubernetes, figure out GPU scheduling, handle scaling, manage model serving... it's a lot of work.

    What if there was a middle ground?

    What if infrastructure scaled itself instead of making you scale it?

    Can we use existing Rancher capabilities like CAPI, autoscaling, and GitOps to make this simpler instead of building everything from scratch?

    Project Repository: github.com/alexander-demicev/llmserverless


    What This Project Does

    A key feature is hybrid deployment: requests can be routed based on complexity or privacy needs. Simple or low-sensitivity queries can use public APIs (like OpenAI), while complex or private requests are handled in-house on local infrastructure. This flexibility allows balancing cost, privacy, and performance - using cloud for routine tasks and on-premises resources for sensitive or demanding workloads.

    A complete, self-scaling LLM infrastructure that:

    • Scales to zero when idle (no idle costs)
    • Scales up automatically when requests come in
    • Adds more nodes when needed, removes them when demand drops
    • Runs on any infrastructure - laptop, bare metal, or cloud

    Think of it as "serverless for LLMs" - focus on building, the infrastructure handles itself.

    How It Works

    A combination of open source tools working together:

    Flow:

    • Users interact with OpenWebUI (chat interface)
    • Requests go to LiteLLM Gateway
    • LiteLLM routes requests to:
      • Ollama (Knative) for local model inference (auto-scales pods)
      • Or cloud APIs for fallback


    The Agentic Rancher Experiment: Do Androids Dream of Electric Cattle? by moio

    Rancher is a beast of a codebase. Let's investigate if the new 2025 generation of GitHub Autonomous Coding Agents and Copilot Workspaces can actually tame it. A GitHub robot mascot trying to lasso a blue bull with a Kubernetes logo tatooed on it


    The Plan

    Create a sandbox GitHub Organization, clone in key Rancher repositories, and let the AI loose to see if it can handle real-world enterprise OSS maintenance - or if it just hallucinates new breeds of Kubernetes resources!

    Specifically, throw "Agentic Coders" some typical tasks in a complex, long-lived open-source project, such as:


    The Grunt Work: generate missing GoDocs, unit tests, and refactorings. Rebase PRs.

    The Complex Stuff: fix actual (historical) bugs and feature requests to see if they can traverse the complexity without (too much) human hand-holding.

    Hunting Down Gaps: find areas lacking in docs, areas of improvement in code, dependency bumps, and so on.


    If time allows, also experiment with Model Context Protocol (MCP) to give agents context on our specific build pipelines and CI/CD logs.

    Why?

    We know AI can write "Hello World." and also moderately complex programs from a green field. But can it rebase a 3-month-old PR with conflicts in rancher/rancher? I want to find the breaking point of current AI agents to determine if and how they can help us to reduce our technical debt, work faster and better. At the same time, find out about pitfalls and shortcomings.

    The CONCLUSION!!!

    A add-emoji State of the Union add-emoji document was compiled to summarize lessons learned this week. For more gory details, just read on the diary below! add-emoji


    A CLI for Harvester by mohamed.belgaied

    Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI. Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.

    Project Description

    Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as: harvester vm create my-vm --count 5 to create 5 VMs named my-vm-01 to my-vm-05.

    asciicast

    Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.

    Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli

    Done in previous Hackweeks

    • Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
    • Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE

    Goal for this Hackweek

    The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.

    Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it

    Issue list is here: https://github.com/belgaied2/harvester-cli/issues

    Resources

    The project is written in Go, and using client-go the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact). Welcome contributions are:

    • Testing it and creating issues
    • Documentation
    • Go code improvement

    What you might learn

    Harvester CLI might be interesting to you if you want to learn more about:

    • GitHub Actions
    • Harvester as a SUSE Product
    • Go programming language
    • Kubernetes API
    • Kubevirt API objects (Manipulating VMs and VM Configuration in Kubernetes using Kubevirt)


    Create a go module to wrap happy-compta.fr by cbosdonnat

    Description

    https://happy-compta.fr is a tool for french work councils simple book keeping. While it does the job, it has no API to work with and it is tedious to enter loads of operations.

    Goals

    Write a go client module to be used as an API to programmatically manipulate the tool.

    Writing an example tool to load data from a CSV file would be good too.


    Contribute to terraform-provider-libvirt by pinvernizzi

    Description

    The SUSE Manager (SUMA) teams' main tool for infrastructure automation, Sumaform, largely relies on terraform-provider-libvirt. That provider is also widely used by other teams, both inside and outside SUSE.

    It would be good to help the maintainers of this project and give back to the community around it, after all the amazing work that has been already done.

    If you're interested in any of infrastructure automation, Terraform, virtualization, tooling development, Go (...) it is also a good chance to learn a bit about them all by putting your hands on an interesting, real-use-case and complex project.

    Goals

    • Get more familiar with Terraform provider development and libvirt bindings in Go
    • Solve some issues and/or implement some features
    • Get in touch with the community around the project

    Resources


    terraform-provider-feilong by e_bischoff

    Project Description

    People need to test operating systems and applications on s390 platform. While this is straightforward with KVM, this is very difficult with z/VM.

    IBM Cloud Infrastructure Center (ICIC) harnesses the Feilong API, but you can use Feilong without installing ICIC(see this schema).

    What about writing a terraform Feilong provider, just like we have the terraform libvirt provider? That would allow to transparently call Feilong from your main.tf files to deploy and destroy resources on your z/VM system.

    Goal for Hackweek 23

    I would like to be able to easily deploy and provision VMs automatically on a z/VM system, in a way that people might enjoy even outside of SUSE.

    My technical preference is to write a terraform provider plugin, as it is the approach that involves the least software components for our deployments, while remaining clean, and compatible with our existing development infrastructure.

    Goals for Hackweek 24

    Feilong provider works and is used internally by SUSE Manager team. Let's push it forward!

    Let's add support for fiberchannel disks and multipath.

    Goals for Hackweek 25

    Modernization, maturity, and maintenance: support for SLES 16 and openTofu, new API calls, fixes...

    Resources

    Outcome


    Play with the userfaultfd(2) system call and download on demand using HTTP Range Requests with Golang by rbranco

    Description

    The userfaultfd(2) is a cool system call to handle page faults in user-space. This should allow me to list the contents of an ISO or similar archive without downloading the whole thing. The userfaultfd(2) part can also be done in theory with the PROT_NONE mprotect + SIGSEGV trick, for complete Unix portability, though reportedly being slower.

    Goals

    1. Create my own library for userfaultfd(2) in Golang.
    2. Create my own library for HTTP Range Requests.
    3. Complete portability with Unix.
    4. Benchmarks.
    5. Contribute some tests to LTP.

    Resources

    1. https://docs.kernel.org/admin-guide/mm/userfaultfd.html
    2. https://www.cons.org/cracauer/cracauer-userfaultfd.html


    DNS management with DNSControl by itorres

    Description

    We use several systems to manage DNS at SUSE and openSUSE: BIND, external providers, PowerDNS... each of them is managed in a different way either with raw zones (BIND) or Terraform (external providers).

    DNSControl is an opinionated tool to manage DNS as code while being provider agnostic. It's developed and used by StackExchange, was spearheaded by Tom Limoncelly and is already being used to manage DNS for openSUSE.

    Implementing DNSControl should allow us to have a single DNS operations interface that end users can leverage.

    This would reduce complexity for end users as they can use a single simplified ECMAScript based DSL instead of BIND zones for internal and HCL config for external.

    Operations for our IT organization would be greatly reduced. DNSControl itself has several internal checks that reduce our need to do linting and we can concentrate on implementing logical checks based on ownership.

    This simplifies reviews a lot and the integration with BIND and providers allows our IT organization to implement an apply on merge.

    At an organizational level it will separate our DNS tasks from other IT operations, speeding up DNS changes and allowing us to delegate DNS reviews to service desk or even customer teams through CODEOWNERS.

    Goals

    • Create a test subdomain in one of our internal BIND servers to be managed with DNSControl.
    • Create an internal DNSControl repository to implement gitops for DNS.
    • Deploy DNS changes strictly through gitops.

    Extended goals

    • Implement CODEOWNERS.
    • Replicate main goals for external DNS.

    Resources