Description

Installing an maintaining ceph as storage solution needs a lot of expertise. Rook in combination with Kubernetes tries to make this more convenient. But this is only true if you are familiar with Kubernetes and its peculiarities. This project tries to create a simple tool which creates a K8s cluster providing Ceph-storage.

Goal for this Hackweek

  • Create and provide Storage
  • Add and remove nodes from/to the cluster

Resources

  • Kubernetes
  • Rook
  • Ceph

Looking for hackers with the skills:

kubernetes rook ceph python golang

This project is part of:

Hack Week 20

Activity

  • over 4 years ago: haass started this project.
  • over 4 years ago: haass added keyword "kubernetes" to this project.
  • over 4 years ago: haass added keyword "rook" to this project.
  • over 4 years ago: haass added keyword "ceph" to this project.
  • over 4 years ago: haass added keyword "python" to this project.
  • over 4 years ago: haass added keyword "golang" to this project.
  • over 4 years ago: haass originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.


    OpenPlatform Self-Service Portal by tmuntan1

    Description

    In SUSE IT, we developed an internal developer platform for our engineers using SUSE technologies such as RKE2, SUSE Virtualization, and Rancher. While it works well for our existing users, the onboarding process could be better.

    To improve our customer experience, I would like to build a self-service portal to make it easy for people to accomplish common actions. To get started, I would have the portal create Jira SD tickets for our customers to have better information in our tickets, but eventually I want to add automation to reduce our workload.

    Goals

    • Build a frontend website (Angular) that helps customers create Jira SD tickets.
    • Build a backend (Rust with Axum) for the backend, which would do all the hard work for the frontend.

    Resources


    A CLI for Harvester by mohamed.belgaied

    Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI. Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.

    Project Description

    Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as: harvester vm create my-vm --count 5 to create 5 VMs named my-vm-01 to my-vm-05.

    asciicast

    Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.

    Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli

    Done in previous Hackweeks

    • Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
    • Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE

    Goal for this Hackweek

    The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.

    Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it

    Issue list is here: https://github.com/belgaied2/harvester-cli/issues

    Resources

    The project is written in Go, and using client-go the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact). Welcome contributions are:

    • Testing it and creating issues
    • Documentation
    • Go code improvement

    What you might learn

    Harvester CLI might be interesting to you if you want to learn more about:

    • GitHub Actions
    • Harvester as a SUSE Product
    • Go programming language
    • Kubernetes API
    • Kubevirt API objects (Manipulating VMs and VM Configuration in Kubernetes using Kubevirt)


    Rancher/k8s Trouble-Maker by tonyhansen

    Project Description

    When studying for my RHCSA, I found trouble-maker, which is a program that breaks a Linux OS and requires you to fix it. I want to create something similar for Rancher/k8s that can allow for troubleshooting an unknown environment.

    Goals for Hackweek 25

    • Update to modern Rancher and verify that existing tests still work
    • Change testing logic to populate secrets instead of requiring a secondary script
    • Add new tests

    Goals for Hackweek 24 (Complete)

    • Create a basic framework for creating Rancher/k8s cluster lab environments as needed for the Break/Fix
    • Create at least 5 modules that can be applied to the cluster and require troubleshooting

    Resources

    • https://github.com/celidon/rancher-troublemaker
    • https://github.com/rancher/terraform-provider-rancher2
    • https://github.com/rancher/tf-rancher-up
    • https://github.com/rancher/quickstart


    Self-Scaling LLM Infrastructure Powered by Rancher by ademicev0

    Self-Scaling LLM Infrastructure Powered by Rancher

    logo


    Description

    The Problem

    Running LLMs can get expensive and complex pretty quickly.

    Today there are typically two choices:

    1. Use cloud APIs like OpenAI or Anthropic. Easy to start with, but costs add up at scale.
    2. Self-host everything - set up Kubernetes, figure out GPU scheduling, handle scaling, manage model serving... it's a lot of work.

    What if there was a middle ground?

    Project Repository: github.com/alexander-demicev/llmserverless


    What This Project Does

    A key feature is hybrid deployment: requests can be routed based on complexity or privacy needs. Simple or low-sensitivity queries can use public APIs (like OpenAI), while complex or private requests are handled in-house on local infrastructure. This flexibility allows balancing cost, privacy, and performance - using cloud for routine tasks and on-premises resources for sensitive or demanding workloads.

    A complete, self-scaling LLM infrastructure that:

    • Scales to zero when idle (no idle costs)
    • Scales up automatically when requests come in
    • Adds more nodes when needed, removes them when demand drops
    • Runs on any infrastructure - laptop, bare metal, or cloud

    Think of it as "serverless for LLMs" - focus on building, the infrastructure handles itself.

    How It Works

    A combination of open source tools working together:

    Flow:

    • Users interact with OpenWebUI (chat interface)
    • Requests go to LiteLLM Gateway
    • LiteLLM routes requests to:
      • Ollama (Knative) for local model inference (auto-scales pods)
      • Or cloud APIs for fallback
    • Cluster Autoscaler scales nodes up/down as needed
    • Fleet keeps everything in sync via GitOps

    Goals


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Resources


    Improvements to osc (especially with regards to the Git workflow) by mcepl

    Description

    There is plenty of hacking on osc, where we could spent some fun time. I would like to see a solution for https://github.com/openSUSE/osc/issues/2006 (which is sufficiently non-serious, that it could be part of HackWeek project).


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    Pending

    Debian 13

    The new version of the beloved Debian GNU/Linux OS

    Seems to be a Debian 12 derivative, so adding it could be quite easy.

    • [ ] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    • W] Onboarding (salt minion from UI, salt minion from bootstrap script, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [ ] Package management (install, remove, update...)
    • [ ] Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already). Probably not for Debian as IIRC we don't support patches yet.
    • [ ] Applying any basic salt state (including a formula)
    • [ ] Salt remote commands
    • [ ] Bonus point: Java part for product identification, and monitoring enablement
    • [ ] Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    • [ ] Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)


    Enhance git-sha-verify: A tool to checkout validated git hashes by gpathak

    Description

    git-sha-verify is a simple shell utility to verify and checkout trusted git commits signed using GPG key. This tool helps ensure that only authorized or validated commit hashes are checked out from a git repository, supporting better code integrity and security within the workflow.

    Supports:

    • Verifying commit authenticity signed using gpg key
    • Checking out trusted commits

    Ideal for teams and projects where the integrity of git history is crucial.

    Goals

    A minimal python code of the shell script exists as a pull request.

    The goal of this hackweek is to:

    • Add more unit tests
    • Make the python code modular
    • Add code coverage if possible

    Resources


    Improve chore and screen time doc generator script `wochenplaner` by gniebler

    Description

    I wrote a little Python script to generate PDF docs, which can be used to track daily chore completion and screen time usage for several people, with one page per person/week.

    I named this script wochenplaner and have been using it for a few months now.

    It needs some improvements and adjustments in how the screen time should be tracked and how chores are displayed.

    Goals

    • Fix chore field separation lines
    • Change screen time tracking logic from "global" (week-long) to daily subtraction and weekly addition of remainders (more intuitive than current "weekly time budget method)
    • Add logic to fill in chore fields/lines, ideally with pictures, falling back to text.

    Resources

    tbd (Gitlab repo)


    Updatecli Autodiscovery supporting WASM plugins by olblak

    Description

    Updatecli is a Golang Update policy engine that allow to write Update policies in YAML manifest. Updatecli already has a plugin ecosystem for common update strategies such as automating Dockerfile or Kubernetes manifest from Git repositories.

    This is what we call autodiscovery where Updatecli generate manifest and apply them dynamically based on some context.

    Obviously, the Updatecli project doesn't accept plugins specific to an organization.

    I saw project using different languages such as python, C#, or JS to generate those manifest.

    It would be great to be able to share and reuse those specific plugins

    During the HackWeek, I'll hang on the Updatecli matrix channel

    https://matrix.to/#/#Updatecli_community:gitter.im

    Goals

    Implement autodiscovery plugins using WASM. I am planning to experiment with https://github.com/extism/extism

    To build a simple WASM autodiscovery plugin and run it from Updatecli

    Resources

    • https://github.com/extism/extism
    • https://github.com/updatecli/updatecli
    • https://www.updatecli.io/docs/core/autodiscovery/
    • https://matrix.to/#/#Updatecli_community:gitter.im


    Play with the userfaultfd(2) system call and download on demand using HTTP Range Requests with Golang by rbranco

    Description

    The userfaultfd(2) is a cool system call to handle page faults in user-space. This should allow me to list the contents of an ISO or similar archive without downloading the whole thing. The userfaultfd(2) part can also be done in theory with the PROT_NONE mprotect + SIGSEGV trick, for complete Unix portability, though reportedly being slower.

    Goals

    1. Create my own library for userfaultfd(2) in Golang.
    2. Create my own library for HTTP Range Requests.
    3. Complete portability with Unix.
    4. Benchmarks.
    5. Contribute some tests to LTP.

    Resources

    1. https://docs.kernel.org/admin-guide/mm/userfaultfd.html
    2. https://github.com/loopholelabs/userfaultfd-go
    3. https://github.com/DHowett/ranger
    4. https://www.cons.org/cracauer/cracauer-userfaultfd.html


    A CLI for Harvester by mohamed.belgaied

    Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI. Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.

    Project Description

    Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as: harvester vm create my-vm --count 5 to create 5 VMs named my-vm-01 to my-vm-05.

    asciicast

    Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.

    Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli

    Done in previous Hackweeks

    • Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
    • Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE

    Goal for this Hackweek

    The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.

    Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it

    Issue list is here: https://github.com/belgaied2/harvester-cli/issues

    Resources

    The project is written in Go, and using client-go the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact). Welcome contributions are:

    • Testing it and creating issues
    • Documentation
    • Go code improvement

    What you might learn

    Harvester CLI might be interesting to you if you want to learn more about:

    • GitHub Actions
    • Harvester as a SUSE Product
    • Go programming language
    • Kubernetes API
    • Kubevirt API objects (Manipulating VMs and VM Configuration in Kubernetes using Kubevirt)


    Mammuthus - The NFS-Ganesha inside Kubernetes controller by vcheng

    Description

    As the user-space NFS provider, the NFS-Ganesha is wieldy use with serval projects. e.g. Longhorn/Rook. We want to create the Kubernetes Controller to make configuring NFS-Ganesha easy. This controller will let users configure NFS-Ganesha through different backends like VFS/CephFS.

    Goals

    1. Create NFS-Ganesha Package on OBS: nfs-ganesha5, nfs-ganesha6
    2. Create NFS-Ganesha Container Image on OBS: Image
    3. Create a Kubernetes controller for NFS-Ganesha and support the VFS configuration on demand. Mammuthus

    Resources

    NFS-Ganesha


    terraform-provider-feilong by e_bischoff

    Project Description

    People need to test operating systems and applications on s390 platform.

    Installation from scratch solutions include:

    • just deploy and provision manually add-emoji (with the help of ftpboot script, if you are at SUSE)
    • use s3270 terminal emulation (used by openQA people?)
    • use LXC from IBM to start CP commands and analyze the results
    • use zPXE to do some PXE-alike booting (used by the orthos team?)
    • use tessia to install from scratch using autoyast
    • use libvirt for s390 to do some nested virtualization on some already deployed z/VM system
    • directly install a Linux kernel on a LPAR and use kvm + libvirt from there

    Deployment from image solutions include:

    • use ICIC web interface (openstack in disguise, contributed by IBM)
    • use ICIC from the openstack terraform provider (used by Rancher QA)
    • use zvm_ansible to control SMAPI
    • connect directly to SMAPI low-level socket interface

    IBM Cloud Infrastructure Center (ICIC) harnesses the Feilong API, but you can use Feilong without installing ICIC, provided you set up a "z/VM cloud connector" into one of your VMs following this schema.

    What about writing a terraform Feilong provider, just like we have the terraform libvirt provider? That would allow to transparently call Feilong from your main.tf files to deploy and destroy resources on your system/z.

    Other Feilong-based solutions include:

    • make libvirt Feilong-aware
    • simply call Feilong from shell scripts with curl
    • use zvmconnector client python library from Feilong
    • use zthin part of Feilong to directly command SMAPI.

    Goal for Hackweek 23

    My final goal is to be able to easily deploy and provision VMs automatically on a z/VM system, in a way that people might enjoy even outside of SUSE.

    My technical preference is to write a terraform provider plugin, as it is the approach that involves the least software components for our deployments, while remaining clean, and compatible with our existing development infrastructure.

    Goals for Hackweek 24

    Feilong provider works and is used internally by SUSE Manager team. Let's push it forward!

    Let's add support for fiberchannel disks and multipath.

    Goals for Hackweek 25

    Modernization, maturity, and maintenance.