Problem statement

Right now, we have different resources to pool videos. The goal of is to consolidate all video resources into a central place to make them easily searchable, and enable a youtube like experience, rather than a simple file list.

Approach

Evaluate both VoctoWeb and MediaGoblin (packaging efforts for this are also a hackweek project). The goal is to have all videos pooled in one place, searchable, and easily accessible from a browser.

Evaluation criteria:

  • Allows simple uploads
  • Allows watching in a browser
  • Allows easy download for offline consumption
  • Provides all vital metadata
  • Provides a good search functionality.
  • Provides means to easily embed videos into other sites

The plan is to write Salt packages for deployment to ensure it's reproducible and to publish the Salt recipes. With a production instance, import, existing videos will be imported. A VM with the required resources has already been requested.

Stretch goals

Improve Availability, reduce latency

The video server will be initially located on the Nuremberg site. I'll investigate how bad the latency to other sites is under broad use. most efficiently make the video available to all sites. This could be a mirrorbrain-based CDN, or caching nodes. I will document my findings on what's being used elsewhere to get the job done, and lay out a path

Hook up with the existing voctomix recording toolchain

A goal for this setup is to be able to feed it with projects like the OpenSUSE Video box, which is currently Debian-based. OpenSUSE should be able to foot the same task. With Voctomix already packaged, we need to bring it to the latest version, and package more parts of the toolchain, such as the Conference Recording System and ultimately the tracker GUI, where packaging is pending a proper license by upstream.

Looking for hackers with the skills:

video voctoweb mediagoblin voctomix rubyonrails python ffmpeg gstreamer

This project is part of:

Hack Week 16

Activity

  • over 6 years ago: mcaj joined this project.
  • about 7 years ago: bruclik liked this project.
  • about 7 years ago: mstrigl liked this project.
  • about 7 years ago: mstrigl joined this project.
  • about 7 years ago: dmolkentin added keyword "gstreamer" to this project.
  • about 7 years ago: dmolkentin added keyword "ffmpeg" to this project.
  • about 7 years ago: dmolkentin added keyword "rubyonrails" to this project.
  • about 7 years ago: dmolkentin added keyword "python" to this project.
  • about 7 years ago: dmolkentin added keyword "voctoweb" to this project.
  • about 7 years ago: dmolkentin added keyword "mediagoblin" to this project.
  • about 7 years ago: dmolkentin added keyword "voctomix" to this project.
  • about 7 years ago: dmolkentin added keyword "video" to this project.
  • about 7 years ago: TBro started this project.
  • about 7 years ago: dmolkentin originated this project.

  • Comments

    • mstrigl
      about 7 years ago by mstrigl | Reply

      I think my project "Packaging mediagoblin" (https://hackweek.suse.com/16/projects/package-mediagoblin) fits here well.

    • dmolkentin
      about 7 years ago by dmolkentin | Reply

      CRS has been licensed under Apache-2 terms and is now available at https://build.opensuse.org/package/show/home:dmolkentin:video/crs-tracker, with the scripts to follow once I figure a good way to packaging them.

    Similar Projects

    Update my own python audio and video time-lapse and motion capture apps and publish by dmair

    Project Description

    Many years ago, in my own time, I wrote a Qt python application to periodically capture frames from a V4L2 video device (e.g. a webcam) and used it to create daily weather timelapse videos from windows at my home. I have maintained it at home in my own time and this year have added motion detection making it a functional video security tool but with no guarantees. I also wrote a linux audio monitoring app in python using Qt in my own time that captures live signal strength along with 24 hour history of audio signal level/range and audio spectrum. I recently added background noise filtering to the app. In due course I aim to include voice detection, currently I'm assuming via Google's public audio interface. Neither of these is a professional home security app but between them they permit a user to freely monitor video and audio data from a home in a manageable way. Both projects are on github but out-of-date with personal work, I would like to organize and update the github versions of these projects.

    Goal for this Hackweek

    It would probably help to migrate all the v4l2py module based video code to linuxpy.video based code and that looks like a re-write of large areas of the video code. It would also be good to remove a lot of python lint that is several years old to improve the projects with the main goal being to push the recent changes with better organized code to github. If there is enough time I'd like to take the in-line Qt QSettings persistent state code used per-app and write a python class that encapsulates the Qt QSettings class in a value_of(name)/name=value manner for shared use in projects so that persistent state can be accessed read or write anywhere within the apps using a simple interface.

    Resources

    I'm not specifically looking for help but welcome other input.


    Fix RSpec tests in order to replace the ruby-ldap rubygem in OBS by enavarro_suse

    Description

    "LDAP mode is not official supported by OBS!". See: config/options.yml.example#L100-L102

    However, there is an RSpec file which tests LDAP mode in OBS. These tests use the ruby-ldap rubygem, mocking the results returned by a LDAP server.

    The ruby-ldap rubygem seems no longer maintaned, and also prevents from updating to a more recent Ruby version. A good alternative is to replace it with the net-ldap rubygem.

    Before replacing the ruby-ldap rubygem, we should modify the tests so the don't mock the responses of a LDAP server. Instead, we should modify the tests and run them against a real LDAP server.

    Goals

    Goals of this project:

    • Modify the RSpec tests and run them against a real LDAP server
    • Replace the net-ldap rubygem with the ruby-ldap rubygem

    Achieving the above mentioned goals will:

    • Permit upgrading OBS from Ruby 3.1 to Ruby 3.2
    • Make a step towards officially supporting LDAP in OBS.

    Resources


    Ansible for add-on management by lmanfredi

    Description

    Machines can contains various combinations of add-ons and are often modified during the time.

    The list of repos can change so I would like to create an automation able to reset the status to a given state, based on metadata available for these machines

    Goals

    Create an Ansible automation able to take care of add-on (repo list) configuration using metadata as reference

    Resources

    Results

    Created WIP project Ansible-add-on-openSUSE


    Make more sense of openQA test results using AI by livdywan

    Description

    AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.

    User Story

    Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?

    Goals

    • Leverage a chat interface to help Allison
    • Create a model from scratch based on data from openQA
    • Proof of concept for automated analysis of openQA test results

    Bonus

    • Use AI to suggest solutions to merge conflicts
      • This would need a merge conflict editor that can suggest solving the conflict
    • Use image recognition for needles

    Resources

    Timeline

    Day 1

    • Conversing with open-webui to teach me how to create a model based on openQA test results

    Day 2

    Highlights

    • I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
    • Convincing the chat interface to produce code specific to my use case required very explicit instructions.
    • Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
    • Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses

    Outcomes

    • Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
    • Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.


    Team Hedgehogs' Data Observability Dashboard by gsamardzhiev

    Description

    This project aims to develop a comprehensive Data Observability Dashboard that provides r insights into key aspects of data quality and reliability. The dashboard will track:

    Data Freshness: Monitor when data was last updated and flag potential delays.

    Data Volume: Track table row counts to detect unexpected surges or drops in data.

    Data Distribution: Analyze data for null values, outliers, and anomalies to ensure accuracy.

    Data Schema: Track schema changes over time to prevent breaking changes.

    The dashboard's aim is to support historical tracking to support proactive data management and enhance data trust across the data function.

    Goals

    Although the final goal is to create a power bi dashboard that we are able to monitor, our goals is to 1. Create the necessary tables that track the relevant metadata about our current data 2. Automate the process so it runs in a timely manner

    Resources

    AWS Redshift; AWS Glue, Airflow, Python, SQL

    Why Hedgehogs?

    Because we like them.


    Symbol Relations by hli

    Description

    There are tools to build function call graphs based on parsing source code, for example, cscope.

    This project aims to achieve a similar goal by directly parsing the disasembly (i.e. objdump) of a compiled binary. The assembly code is what the CPU sees, therefore more "direct". This may be useful in certain scenarios, such as gdb/crash debugging.

    Detailed description and Demos can be found in the README file:

    Supports x86 for now (because my customers only use x86 machines), but support for other architectures can be added easily.

    Tested with python3.6

    Goals

    Any comments are welcome.

    Resources

    https://github.com/lhb-cafe/SymbolRelations

    symrellib.py: mplements the symbol relation graph and the disassembly parser

    symrel_tracer*.py: implements tracing (-t option)

    symrel.py: "cli parser"


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games