Project Description
Add support in elemental-toolkit for encrypted volumes using LUKS.
Goal for this Hackweek
Install and boot a system with an encrypted persistent data volume.
Bonus points:
- Use TPM2 for unlocking volumes
- Be able to unlock a system remotely
Resources
- https://github.com/frelon/elemental-toolkit
- https://github.com/frelon/elemental-cli
- https://gitlab.com/cryptsetup/cryptsetup
Looking for hackers with the skills:
This project is part of:
Hack Week 22
Activity
Comments
Be the first to comment!
Similar Projects
Build Edge Image Builder ISO with SUSE Manager by mweiss2
Description
With SUSE Manager, we can build OS Images using KIWI and container images. As we have Edge Image Builder, we want to see if it is possible to use SUSE Manager to build/customize OS Images by integrating Edge Image Builder as well.
Goals
To make the process easier for customers, a single-build pipeline that automatically adds the combustion and artifact files from the EIB process is desirable.
- Kiwi and EIB need to come from a Git Repository.
- Kiwi and EIB need to be running as containers.
- Configuration options for the images used for Kiwi and EIB build.
- X86 and ARM64 Support.
- SUSE Manager 4.3 and 5.X Support.
- SLES 15 SP6 / SL Micro 6.0 and SL Micro 6.1 Support.
Outcome
- Change the Kiwi build process to use Podman with the Kiwi image registry.suse.com/bci/kiwi:10.1.10
- Change the Edge Image Builder to produce a combustion-only ISO
- Extract the contents and write them to a dedicated /OEM partition integrated via Kiwi into the ISO Kiwi creates.
Sources and PRs
- https://github.com/Martin-Weiss/kiwi-image-micro-gpu-60
- https://github.com/suse-edge/edge-image-builder/pull/618
- https://github.com/uyuni-project/uyuni/pull/9507
toptop - a top clone written in Go by dshah
Description
toptop
is a clone of Linux's top
CLI tool, but written in Go.
Goals
Learn more about Go (mainly bubbletea) and Linux
Resources
Explore simple and distro indipendent declarative Linux starting on Tumbleweed or Arch Linux by janvhs
Description
Inspired by mkosi the idea is to experiment with a declarative approach of defining Linux systems. A lot of tools already make it possible to manage the systems infrastructure by using description files, rather than manual invocation. An example for this are systemd presets for managing enabled services or the /etc/fstab
file for describing how partitions should be mounted.
If we would take inspiration from openSUSE MicroOS and their handling of the /etc/
directory, we could theoretically use systemd-sysupdate
to swap out the /usr/
partition and create an A/B boot scheme, where the /usr/
partition is always freshly built according to a central system description. In the best case it would be possible to still utilise snapshots, but an A/B root scheme would be sufficient for the beginning. This way you could get the benefit of NixOS's declarative system definition, but still use the distros package repositories and don't have to deal with the overhead of Flakes or the Nix language.
Goals
- A simple and understandable system
- Check fitness of
mkosi
or write a simple extensible image builder tool for it - Create a declarative system specification
- Create a system with swappable
/usr/
partition - Create an A/B root scheme
- Swap to the new system without reboot (kexec?)
Resources
- Ideas that have been floating around in my head for a while
- https://0pointer.net/blog/fitting-everything-together.html
- GNOME OS
- MicroOS
- systemd mkosi
- Vanilla OS
Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil
Join the Gitter channel! https://gitter.im/uyuni-project/hackweek
Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!
Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.
For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.
No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)
The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.
To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):
- Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
- Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
- Package management (install, remove, update...)
- Patching
- Applying any basic salt state (including a formula)
- Salt remote commands
- Bonus point: Java part for product identification, and monitoring enablement
- Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
- Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
- Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)
If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)
- If you don't have knowledge about some of the steps: ask the team
- If you still don't know what to do: switch to another distribution and keep testing.
This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)
Pending
FUSS
FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.
https://fuss.bz.it/
Seems to be a Debian 12 derivative, so adding it could be quite easy.
[ ]
Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)[ ]
Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)[ ]
Package management (install, remove, update...)[ ]
Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already)[ ]
Applying any basic salt state (including a formula)[ ]
Salt remote commands[ ]
Bonus point: Java part for product identification, and monitoring enablement
Contributing to Linux Kernel security by pperego
Description
A couple of weeks ago, I found this blog post by Gustavo Silva, a Linux Kernel contributor.
I always strived to start again into hacking the Linux Kernel, so I asked Coverity scan dashboard access and I want to contribute to Linux Kernel by fixing some minor issues.
I want also to create a Linux Kernel fuzzing lab using qemu and syzkaller
Goals
- Fix at least 2 security bugs
- Create the fuzzing lab and having it running
Resources
The serie of blog posts by Gustavo Silva inspiring this project.
An email with some quick "where to start" instructions The patchset philosophy
VulnHeap by r1chard-lyu
Description
The VulnHeap project is dedicated to the in-depth analysis and exploitation of vulnerabilities within heap memory management. It focuses on understanding the intricate workflow of heap allocation, chunk structures, and bin management, which are essential to identifying and mitigating security risks.
Goals
- Familiarize with heap
- Heap workflow
- Chunk and bin structure
- Vulnerabilities
- Vulnerability
- Use after free (UAF)
- Heap overflow
- Double free
- Use Docker to create a vulnerable environment and apply techniques to exploit it
Resources
- https://heap-exploitation.dhavalkapil.com/divingintoglibc_heap
- https://raw.githubusercontent.com/cloudburst/libheap/master/heap.png
- https://github.com/shellphish/how2heap?tab=readme-ov-file