Back in the late 90s to early 2000s, SiS graphics chips were fairly common and found in many low-end devices. Today, the chips are still capable enough for simple graphics needs, but the graphics cards were on PCI and AGP buses. They are not usable in modern computers.

However, there exist USB-based graphics cards with a SiS 315 graphics chip. Those are around on Ebay et al [1] and easily usable with current computers. I already do have a driver for the old PCI-based SiS drivers and have long been struggling to find something useful to do with it. Converting it to serve USB devices would finally make it useful.

The goal for Hackweek 20 is to dedust my SiS driver and make it work with the 315 chip. That might take a bit or not; I'm not sure yet. Afterwards, the PCI I/O needs to be replaced with corresponding USB operations.

There are quite a few resources. My PCI driver is at [2]. For the USB devices, there exists an old userspace driver at [3] and a kernel stub at [4]. A general description of the device can be found in the Wayback Machine. [5]

If successful, the driver is supposed to be included in the upstream kernel.

[1] https://www.amazon.com/Tritton-TRI-UV100-SEE2-SVGA-Adapter/dp/B0003NFY1E

[2] https://gitlab.freedesktop.org/tzimmermann/linux/tree/sisvga

[3] https://gitlab.freedesktop.org/xorg/driver/xf86-video-sisusb

[4] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/usb/misc/sisusbvga?h=v5.11

[5] https://web.archive.org/web/20100610174735/http://www.winischhofer.eu/linuxsisusbvga.shtml

Looking for hackers with the skills:

kernel graphics drm usb

This project is part of:

Hack Week 20

Activity

  • almost 4 years ago: fos liked this project.
  • almost 4 years ago: ptesarik liked this project.
  • almost 4 years ago: tdz liked this project.
  • almost 4 years ago: tdz started this project.
  • almost 4 years ago: tdz added keyword "kernel" to this project.
  • almost 4 years ago: tdz added keyword "graphics" to this project.
  • almost 4 years ago: tdz added keyword "drm" to this project.
  • almost 4 years ago: tdz added keyword "usb" to this project.
  • almost 4 years ago: tdz originated this project.

  • Comments

    • tdz
      over 3 years ago by tdz | Reply

      Day 1: Today I returned to my old driver for SiS PCI devices, which used to work 3yrs ago. Admittedly, the driver has bit-rotted quite a bit. I since updated it and added atomic modesetting. But I never really tested these changes. I can get the modes from the monitor via EDID functionality and the driver now detects the VRAM size correctly. My monitor reports a signal error, which indicates a bug when programming display resolution or timing. Fixing the driver is what I currently do. I'll also have to update it for the 315 chip. My hope is that I can then replace the PCI-bus functionality with USB and have a semi-working USB driver later this week.

    • tdz
      over 3 years ago by tdz | Reply

      Day 2: I'm still working on getting the old PCI-based SiS driver to work correctly within the current kernel. I managed to get the display mode set and improved color-format settings. The display still looks wrong, but it's getting better. I give it one more day. No matter what the state is tomorrow, I'll push for USB support on Thursday.

    • tdz
      over 3 years ago by tdz | Reply

      Day 3: The old driver uses the device VRAM directly. Today I converted it to DRM's SHMEM helpers. This is necessary to work with the USB device. SHMEM buffers will serve as shadow framebuffers that the driver can copy over USB into the device's memory.

    • tdz
      over 3 years ago by tdz | Reply

      Day 4: I began to turn the PCI driver into a USB driver. Each PCI I/O operation has to be converted to a USB bulk message. The rsp code is already in the old kernel stub driver somewhere. The PCI device is a VGA card and therefore POSTed by the BIOS. For the USB device, I expect that there might be an additional POST process necessary. The old userspace driver should have the rsp code somewhere. No way I'll be able to finish all of this by the end of the week.

    • tdz
      over 3 years ago by tdz | Reply

      Day 5: After some back and forth, I'm able to communicate with the USB device. No mode setting yet, just basic communication. I extracted this form the old sisusb driver in the kernel. I'll probably continue this project during the next hackweek.

    Similar Projects

    Model checking the BPF verifier by shunghsiyu

    Project Description

    BPF verifier plays a crucial role in securing the system (though less so now that unprivileged BPF is disabled by default in both upstream and SLES), and bugs in the verifier has lead to privilege escalation vulnerabilities in the past (e.g. CVE-2021-3490).

    One way to check whether the verifer has bugs to use model checking (a formal verification technique), in other words, build a abstract model of how the verifier operates, and then see if certain condition can occur (e.g. incorrect calculation during value tracking of registers) by giving both the model and condition to a solver.

    For the solver I will be using the Z3 SMT solver to do the checking since it provide a Python binding that's relatively easy to use.

    Goal for this Hackweek

    Learn how to use the Z3 Python binding (i.e. Z3Py) to build a model of (part of) the BPF verifier, probably the part that's related to value tracking using tristate numbers (aka tnum), and then check that the algorithm work as intended.

    Resources


    early stage kdump support by mbrugger

    Project Description

    When we experience a early boot crash, we are not able to analyze the kernel dump, as user-space wasn't able to load the crash system. The idea is to make the crash system compiled into the host kernel (think of initramfs) so that we can create a kernel dump really early in the boot process.

    Goal for the Hackweeks

    1. Investigate if this is possible and the implications it would have (done in HW21)
    2. Hack up a PoC (done in HW22 and HW23)
    3. Prepare RFC series (giving it's only one week, we are entering wishful thinking territory here).

    update HW23

    • I was able to include the crash kernel into the kernel Image.
    • I'll need to find a way to load that from init/main.c:start_kernel() probably after kcsan_init()
    • I workaround for a smoke test was to hack kexec_file_load() systemcall which has two problems:
      1. My initramfs in the porduction kernel does not have a new enough kexec version, that's not a blocker but where the week ended
      2. As the crash kernel is part of init.data it will be already stale once I can call kexec_file_load() from user-space.

    The solution is probably to rewrite the POC so that the invocation can be done from init.text (that's my theory) but I'm not sure if I can reuse the kexec infrastructure in the kernel from there, which I rely on heavily.

    update HW24

    • Day1
      • rebased on v6.12 with no problems others then me breaking the config
      • setting up a new compilation and qemu/virtme env
      • getting desperate as nothing works that used to work
    • Day 2
      • getting to call the invocation of loading the early kernel from __init after kcsan_init()
    • Day 3

      • fix problem of memdup not being able to alloc so much memory... use 64K page sizes for now
      • code refactoring
      • I'm now able to load the crash kernel
      • When using virtme I can boot into the crash kernel, also it doesn't boot completely (major milestone!), crash in elfcorehdr_read_notes()
    • Day 4

      • crash systems crashes (no pun intended) in copy_old_mempage() link; will need to understand elfcorehdr...
      • call path vmcore_init() -> parse_crash_elf_headers() -> elfcorehdr_read() -> read_from_oldmem() -> copy_oldmem_page() -> copy_to_iter()
    • Day 5

      • hacking arch/arm64/kernel/crash_dump.c:copy_old_mempage() to see if crash system really starts. It does.
      • fun fact: retested with more reserved memory and with UEFI FW, host kernel crashes in init but directly starts the crash kernel, so it works (somehow) \o/
    • TODOs

      • fix elfcorehdr so that we actually can make use of all this...
      • test where in the boot __init() chain we can/should call kexec_early_dump()


    FizzBuzz OS by mssola

    Project Description

    FizzBuzz OS (or just fbos) is an idea I've had in order to better grasp the fundamentals of the low level of a RISC-V machine. In practice, I'd like to build a small Operating System kernel that is able to launch three processes: one that simply prints "Fizz", another that prints "Buzz", and the third which prints "FizzBuzz". These processes are unaware of each other and it's up to the kernel to schedule them by using the timer interrupts as given on openSBI (fizz on % 3 seconds, buzz on % 5 seconds, and fizzbuzz on % 15 seconds).

    This kernel provides just one system call, write, which allows any program to pass the string to be written into stdout.

    This project is free software and you can find it here.

    Goal for this Hackweek

    • Better understand the RISC-V SBI interface.
    • Better understand RISC-V in privileged mode.
    • Have fun.

    Resources

    Results

    The project was a resounding success add-emoji Lots of learning, and the initial target was met.


    Contributing to Linux Kernel security by pperego

    Description

    A couple of weeks ago, I found this blog post by Gustavo Silva, a Linux Kernel contributor.

    I always strived to start again into hacking the Linux Kernel, so I asked Coverity scan dashboard access and I want to contribute to Linux Kernel by fixing some minor issues.

    I want also to create a Linux Kernel fuzzing lab using qemu and syzkaller

    Goals

    1. Fix at least 2 security bugs
    2. Create the fuzzing lab and having it running

    The story so far

    • Day 1: setting up a virtual machine for kernel development using Tumbleweed. Reading a lot of documentation, taking confidence with Coverity dashboard and with procedures to submit a kernel patch
    • Day 2: I read really a lot of documentation and I triaged some findings on Coverity SAST dashboard. I have to confirm that SAST tool are great false positives generator, even for low hanging fruits.
    • Day 3: Working on trivial changes after I read this blog post: https://www.toblux.com/posts/2024/02/linux-kernel-patches.html. I have to take confidence with the patch preparation and submit process yet.
      • First trivial patch sent: using strtruefalse() macro instead of hard-coded strings in a staging driver for a lcd display
      • Fix for a dereference before null check issue discovered by Coverity (CID 1601566) https://scan7.scan.coverity.com/#/project-view/52110/11354?selectedIssue=1601566
    • Day 4: Triaging more issues found by Coverity.
      • The patch for CID 1601566 was refused. The check against the NULL pointer was pointless so I prepared a version 2 of the patch removing the check.
      • Fixed another dereference before NULL check in iwlmvmparsewowlaninfo_notif() routine (CID 1601547). This one was already submitted by another kernel hacker :(
    • Day 5: Wrapping up. I had to do some minor rework on patch for CID 1601566. I found a stalker bothering me in private emails and people I interacted with me, advised he is a well known bothering person. Markus Elfring for the record.
    • Wrapping up: being back doing kernel hacking is amazing and I don't want to stop it. My battery pack is completely drained but changing the scope gave me a great twist and I really want to feel this energy not doing a single task for months.

      I failed in setting up a fuzzing lab but I was too optimistic for the patch submission process.

    The patches

    1


    Hacking on sched_ext by flonnegren

    Description

    Sched_ext upstream has some interesting issues open for grabs:

    Goals

    Send patches to sched_ext upstream

    Also set up perfetto to trace some of the example schedulers.

    Resources

    https://github.com/sched-ext/scx


    Create a DRM driver for VGA video cards by tdz

    Yes, those VGA video cards. The goal of this project is to implement a DRM graphics driver for such devices. While actual hardware is hard to obtain or even run today, qemu emulates VGA output.

    VGA has a number of limitations, which make this project interesting.

    • There are only 640x480 pixels (or less) on the screen. That resolution is also a soft lower limit imposed by DRM. It's mostly a problem for desktop environments though.
    • Desktop environments assume 16 million colors, but there are only 16 colors with VGA. VGA's 256 color palette is not available at 640x480. We can choose those 16 colors freely. The interesting part is how to choose them. We have to build a palette for the displayed frame and map each color to one of the palette's 16 entries. This is called dithering, and VGA's limitations are a good opportunity to learn about dithering algorithms.
    • VGA has an interesting memory layout. Most graphics devices use linear framebuffers, which store the pixels byte by byte. VGA uses 4 bitplanes instead. Plane 0 holds all bits 0 of all pixels. Plane 1 holds all bits 1 of all pixels, and so on.

    The driver will probably not be useful to many people. But, if finished, it can serve as test environment for low-level hardware. There's some interest in supporting old Amiga and Atari framebuffers in DRM. Those systems have similar limitations as VGA, but are harder to obtain and test with. With qemu, the VGA driver could fill this gap.

    Apart from the Wikipedia entry, good resources on VGA are at osdev.net and FreeVGA


    New openSUSE-welcome by lkocman

    Project Description

    Let's revisit our existing openSUSE welcome app.

    My goal was to show Leap 16 in a new coat. Welcome app adds to the first time use experience. We've recently added donation button to our existing welcome.

    Some things that I recently wanted to address were EOL and possibly upgrade notification.

    I've already done some experiments with mint welcome app, but not sure if it's better than the existing one.

    There is also a PR to rework existing app https://github.com/openSUSE/openSUSE-welcome/pull/36 (this should be considered as an option too)

    Goal for this Hackweek

    New welcome app, possibly with EOL notification for Leap.

    1) Welcome application(s) with (rebrand changes) maintained under github.com/openSUSE

    2) Application is submitted to openSUSE:Factory && openSUSE:Leap:16.0

    3) Updated needles in openQA (probably post hackweek)

    Resources

    Reddit discussion about the best welcome app out there.

    Github repo for the current welcome app.


    Create DRM drivers for VESA and EFI framebuffers by tdz

    Description

    We already have simpledrm for firmware framebuffers. But the driver is originally for ARM boards, not PCs. It is already overloaded with code to support both use cases. At the same time it is missing possible features for VESA and EFI, such as palette modes or EDID support. We should have DRM drivers for VESA and EFI interfaces. The infrastructure exists already and initial drivers can be forked from simpledrm.

    Goals

    • Initially, a bare driver for VESA or EFI should be created. It can take functionality from simpledrm.
    • Then we can begin to add additional features. The boot loader can provide EDID data. With VGA hardware, VESA can support paletted modes or color management. Example code exists in vesafb.


    Finish gfxprim application multiplexor (window manager) by metan

    Project Description

    I've implemented drivers for a few e-ink displays during the last hackweek and made sure that gfxprim widgets run nicely on e-ink as well. The missing piece to have a portable e-ink computer/reader/music player/... is a application that can switch between currently running applications and that can start new applications as well. Half of the solution is ready, there is a proxy gfxprim backend where applications render into a piece of a shared memory and input events (e.g. keyboard, mouse) can be multiplexed. What is missing is an interface (possibly touchscreen friendly as well) to make it user friendly.

    Goal for this Hackweek

    Make nekowm usable "window manager".

    Resources


    Create DRM drivers for VESA and EFI framebuffers by tdz

    Description

    We already have simpledrm for firmware framebuffers. But the driver is originally for ARM boards, not PCs. It is already overloaded with code to support both use cases. At the same time it is missing possible features for VESA and EFI, such as palette modes or EDID support. We should have DRM drivers for VESA and EFI interfaces. The infrastructure exists already and initial drivers can be forked from simpledrm.

    Goals

    • Initially, a bare driver for VESA or EFI should be created. It can take functionality from simpledrm.
    • Then we can begin to add additional features. The boot loader can provide EDID data. With VGA hardware, VESA can support paletted modes or color management. Example code exists in vesafb.


    Create a DRM driver for VGA video cards by tdz

    Yes, those VGA video cards. The goal of this project is to implement a DRM graphics driver for such devices. While actual hardware is hard to obtain or even run today, qemu emulates VGA output.

    VGA has a number of limitations, which make this project interesting.

    • There are only 640x480 pixels (or less) on the screen. That resolution is also a soft lower limit imposed by DRM. It's mostly a problem for desktop environments though.
    • Desktop environments assume 16 million colors, but there are only 16 colors with VGA. VGA's 256 color palette is not available at 640x480. We can choose those 16 colors freely. The interesting part is how to choose them. We have to build a palette for the displayed frame and map each color to one of the palette's 16 entries. This is called dithering, and VGA's limitations are a good opportunity to learn about dithering algorithms.
    • VGA has an interesting memory layout. Most graphics devices use linear framebuffers, which store the pixels byte by byte. VGA uses 4 bitplanes instead. Plane 0 holds all bits 0 of all pixels. Plane 1 holds all bits 1 of all pixels, and so on.

    The driver will probably not be useful to many people. But, if finished, it can serve as test environment for low-level hardware. There's some interest in supporting old Amiga and Atari framebuffers in DRM. Those systems have similar limitations as VGA, but are harder to obtain and test with. With qemu, the VGA driver could fill this gap.

    Apart from the Wikipedia entry, good resources on VGA are at osdev.net and FreeVGA