Project Description

Create a K8s CRD for s3gw.
The operator will be written in Go.
The CRD should in the beginning allow an user to create a bucket.

Goal for this Hackweek

The CRD should in the beginning allow an user to create a bucket.

Project

https://github.com/giubacc/s3gw-operator

Looking for hackers with the skills:

golang kubernetes operator s3gw

This project is part of:

Hack Week 22

Activity

  • almost 3 years ago: gbaccini joined this project.
  • almost 3 years ago: gbaccini added keyword "golang" to this project.
  • almost 3 years ago: gbaccini added keyword "kubernetes" to this project.
  • almost 3 years ago: gbaccini added keyword "operator" to this project.
  • almost 3 years ago: gbaccini added keyword "s3gw" to this project.
  • almost 3 years ago: tdehler started this project.
  • about 3 years ago: gbaccini originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Updatecli Autodiscovery supporting WASM plugins by olblak

    Description

    Updatecli is a Golang Update policy engine that allow to write Update policies in YAML manifest. Updatecli already has a plugin ecosystem for common update strategies such as automating Dockerfile or Kubernetes manifest from Git repositories.

    This is what we call autodiscovery where Updatecli generate manifest and apply them dynamically based on some context.

    Obviously, the Updatecli project doesn't accept plugins specific to an organization.

    I saw project using different languages such as python, C#, or JS to generate those manifest.

    It would be great to be able to share and reuse those specific plugins

    During the HackWeek, I'll hang on the Updatecli matrix channel

    https://matrix.to/#/#Updatecli_community:gitter.im

    Goals

    Implement autodiscovery plugins using WASM. I am planning to experiment with https://github.com/extism/extism

    To build a simple WASM autodiscovery plugin and run it from Updatecli

    Resources

    • https://github.com/extism/extism
    • https://github.com/updatecli/updatecli
    • https://www.updatecli.io/docs/core/autodiscovery/
    • https://matrix.to/#/#Updatecli_community:gitter.im


    Play with the userfaultfd(2) system call and download on demand using HTTP Range Requests with Golang by rbranco

    Description

    The userfaultfd(2) is a cool system call to handle page faults in user-space. This should allow me to list the contents of an ISO or similar archive without downloading the whole thing. The userfaultfd(2) part can also be done in theory with the PROT_NONE mprotect + SIGSEGV trick, for complete Unix portability, though reportedly being slower.

    Goals

    1. Create my own library for userfaultfd(2) in Golang.
    2. Create my own library for HTTP Range Requests.
    3. Complete portability with Unix.
    4. Benchmarks.
    5. Contribute some tests to LTP.

    Resources

    1. https://docs.kernel.org/admin-guide/mm/userfaultfd.html
    2. https://www.cons.org/cracauer/cracauer-userfaultfd.html


    Rewrite Distrobox in go (POC) by fabriziosestito

    Description

    Rewriting Distrobox in Go.

    Main benefits:

    • Easier to maintain and to test
    • Adapter pattern for different container backends (LXC, systemd-nspawn, etc.)

    Goals

    • Build a minimal starting point with core commands
    • Keep the CLI interface compatible: existing users shouldn't notice any difference
    • Use a clean Go architecture with adapters for different container backends
    • Keep dependencies minimal and binary size small
    • Benchmark against the original shell script

    Resources

    • Upstream project: https://github.com/89luca89/distrobox/
    • Distrobox site: https://distrobox.it/
    • ArchWiki: https://wiki.archlinux.org/title/Distrobox


    SUSE Health Check Tools by roseswe

    SUSE HC Tools Overview

    A collection of tools written in Bash or Go 1.24++ to make life easier with handling of a bunch of tar.xz balls created by supportconfig.

    Background: For SUSE HC we receive a bunch of supportconfig tar balls to check them for misconfiguration, areas for improvement or future changes.

    Main focus on these HC are High Availability (pacemaker), SLES itself and SAP workloads, esp. around the SUSE best practices.

    Goals

    • Overall improvement of the tools
    • Adding new collectors
    • Add support for SLES16

    Resources

    csv2xls* example.sh go.mod listprodids.txt sumtext* trails.go README.md csv2xls.go exceltest.go go.sum m.sh* sumtext.go vercheck.py* config.ini csvfiles/ getrpm* listprodids* rpmdate.sh* sumxls* verdriver* credtest.go example.py getrpm.go listprodids.go sccfixer.sh* sumxls.go verdriver.go

    docollall.sh* extracthtml.go gethostnamectl* go.sum numastat.go cpuvul* extractcluster.go firmwarebug* gethostnamectl.go m.sh* numastattest.go cpuvul.go extracthtml* firmwarebug.go go.mod numastat* xtr_cib.sh*

    $ getrpm -r pacemaker >> Product ID: 2795 (SUSE Linux Enterprise Server for SAP Applications 15 SP7 x86_64), RPM Name: +--------------+----------------------------+--------+--------------+--------------------+ | Package Name | Version | Arch | Release | Repository | +--------------+----------------------------+--------+--------------+--------------------+ | pacemaker | 2.1.10+20250718.fdf796ebc8 | x86_64 | 150700.3.3.1 | sle-ha/15.7/x86_64 | | pacemaker | 2.1.9+20250410.471584e6a2 | x86_64 | 150700.1.9 | sle-ha/15.7/x86_64 | +--------------+----------------------------+--------+--------------+--------------------+ Total packages found: 2


    Contribute to terraform-provider-libvirt by pinvernizzi

    Description

    The SUSE Manager (SUMA) teams' main tool for infrastructure automation, Sumaform, largely relies on terraform-provider-libvirt. That provider is also widely used by other teams, both inside and outside SUSE.

    It would be good to help the maintainers of this project and give back to the community around it, after all the amazing work that has been already done.

    If you're interested in any of infrastructure automation, Terraform, virtualization, tooling development, Go (...) it is also a good chance to learn a bit about them all by putting your hands on an interesting, real-use-case and complex project.

    Goals

    • Get more familiar with Terraform provider development and libvirt bindings in Go
    • Solve some issues and/or implement some features
    • Get in touch with the community around the project

    Resources


    Preparing KubeVirtBMC for project transfer to the KubeVirt organization by zchang

    Description

    KubeVirtBMC is preparing to transfer the project to the KubeVirt organization. One requirement is to enhance the modeling design's security. The current v1alpha1 API (the VirtualMachineBMC CRD) was designed during the proof-of-concept stage. It's immature and inherently insecure due to its cross-namespace object references, exposing security concerns from an RBAC perspective.

    The other long-awaited feature is the ability to mount virtual media so that virtual machines can boot from remote ISO images.

    Goals

    1. Deliver the v1beta1 API and its corresponding controller implementation
    2. Enable the Redfish virtual media mount function for KubeVirt virtual machines

    Resources


    OpenPlatform Self-Service Portal by tmuntan1

    Description

    In SUSE IT, we developed an internal developer platform for our engineers using SUSE technologies such as RKE2, SUSE Virtualization, and Rancher. While it works well for our existing users, the onboarding process could be better.

    To improve our customer experience, I would like to build a self-service portal to make it easy for people to accomplish common actions. To get started, I would have the portal create Jira SD tickets for our customers to have better information in our tickets, but eventually I want to add automation to reduce our workload.

    Goals

    • Build a frontend website (Angular) that helps customers create Jira SD tickets.
    • Build a backend (Rust with Axum) for the backend, which would do all the hard work for the frontend.

    Resources (SUSE VPN only)

    • development site: https://ui-dev.openplatform.suse.com/login?returnUrl=%2Fopenplatform%2Fforms
    • https://gitlab.suse.de/itpe/core/open-platform/op-portal/backend
    • https://gitlab.suse.de/itpe/core/open-platform/op-portal/frontend


    Kubernetes-Based ML Lifecycle Automation by lmiranda

    Description

    This project aims to build a complete end-to-end Machine Learning pipeline running entirely on Kubernetes, using Go, and containerized ML components.

    The pipeline will automate the lifecycle of a machine learning model, including:

    • Data ingestion/collection
    • Model training as a Kubernetes Job
    • Model artifact storage in an S3-compatible registry (e.g. Minio)
    • A Go-based deployment controller that automatically deploys new model versions to Kubernetes using Rancher
    • A lightweight inference service that loads and serves the latest model
    • Monitoring of model performance and service health through Prometheus/Grafana

    The outcome is a working prototype of an MLOps workflow that demonstrates how AI workloads can be trained, versioned, deployed, and monitored using the Kubernetes ecosystem.

    Goals

    By the end of Hack Week, the project should:

    1. Produce a fully functional ML pipeline running on Kubernetes with:

      • Data collection job
      • Training job container
      • Storage and versioning of trained models
      • Automated deployment of new model versions
      • Model inference API service
      • Basic monitoring dashboards
    2. Showcase a Go-based deployment automation component, which scans the model registry and automatically generates & applies Kubernetes manifests for new model versions.

    3. Enable continuous improvement by making the system modular and extensible (e.g., additional models, metrics, autoscaling, or drift detection can be added later).

    4. Prepare a short demo explaining the end-to-end process and how new models flow through the system.

    Resources

    Project Repository

    Updates

    1. Training pipeline and datasets
    2. Inference Service py


    The Agentic Rancher Experiment: Do Androids Dream of Electric Cattle? by moio

    Rancher is a beast of a codebase. Let's investigate if the new 2025 generation of GitHub Autonomous Coding Agents and Copilot Workspaces can actually tame it. A GitHub robot mascot trying to lasso a blue bull with a Kubernetes logo tatooed on it


    The Plan

    Create a sandbox GitHub Organization, clone in key Rancher repositories, and let the AI loose to see if it can handle real-world enterprise OSS maintenance - or if it just hallucinates new breeds of Kubernetes resources!

    Specifically, throw "Agentic Coders" some typical tasks in a complex, long-lived open-source project, such as:


    The Grunt Work: generate missing GoDocs, unit tests, and refactorings. Rebase PRs.

    The Complex Stuff: fix actual (historical) bugs and feature requests to see if they can traverse the complexity without (too much) human hand-holding.

    Hunting Down Gaps: find areas lacking in docs, areas of improvement in code, dependency bumps, and so on.


    If time allows, also experiment with Model Context Protocol (MCP) to give agents context on our specific build pipelines and CI/CD logs.

    Why?

    We know AI can write "Hello World." and also moderately complex programs from a green field. But can it rebase a 3-month-old PR with conflicts in rancher/rancher? I want to find the breaking point of current AI agents to determine if and how they can help us to reduce our technical debt, work faster and better. At the same time, find out about pitfalls and shortcomings.

    The CONCLUSION!!!

    A add-emoji State of the Union add-emoji document was compiled to summarize lessons learned this week. For more gory details, just read on the diary below! add-emoji


    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.