Project Description

Moving as much as possible of MicroOS Desktop into containers.

Goal is to reduce the need for a reboot of MicroOS Desktop to apply security update as much as possible. For most services, a restart of the container for the service should be enough.

Goal for this Hackweek

Improving the gdm proof of concept

Create other containers for other components used for MicroOS Desktop.

Maybe evaluate usage of flatpak instead of OCI containers for this (now that OBS is able to build flatpak).

Resources

gdm proof of concept

flatpak support in OBS

Looking for hackers with the skills:

microos gnome flatpak containers podman desktop

This project is part of:

Hack Week 20

Activity

  • over 3 years ago: dfaggioli liked this project.
  • over 3 years ago: bdekany liked this project.
  • over 3 years ago: acho liked this project.
  • over 3 years ago: yfjiang liked this project.
  • over 3 years ago: sydsb liked this project.
  • over 3 years ago: fcrozat started this project.
  • over 3 years ago: fcrozat added keyword "flatpak" to this project.
  • over 3 years ago: fcrozat added keyword "containers" to this project.
  • over 3 years ago: fcrozat added keyword "podman" to this project.
  • over 3 years ago: fcrozat added keyword "desktop" to this project.
  • over 3 years ago: fcrozat added keyword "microos" to this project.
  • over 3 years ago: fcrozat added keyword "gnome" to this project.
  • over 3 years ago: fcrozat originated this project.

  • Comments

    • sydsb
      over 3 years ago by sydsb | Reply

      Very interesting, Dario already told me about this possibility and I'm very intrigued. Good luck next week in working on the proof of concept!

    Similar Projects

    ADS-B receiver with MicroOS by epaolantonio

    I would like to put one of my spare Raspberry Pis to good use, and what better way to see what flies above my head at any time? add-emoji

    There are various ready-to-use distros already set-up to provide feeder data to platforms like Flightradar24, ADS-B Exchange, FlightAware etc... The goal here would be to do it using MicroOS as a base and containerized decoding of ADS-B data (via tools like dump1090) and web frontend (tar1090).

    Goals

    • Create a working receiver using MicroOS as a base, and containers based on Tumbleweed
    • Make it easy to install
    • Optimize for maximum laziness (i.e. it should take care of itself with minimum intervention)

    Resources

    • 1x Small Board Computer capable of running MicroOS
    • 1x RTL2832U DVB-T dongle
    • 1x MicroSD card
    • https://github.com/antirez/dump1090
    • https://github.com/flightaware/dump1090 (dump1090 fork by FlightAware)
    • https://github.com/wiedehopf/tar1090

    Project status (2024-11-22)

    So I'd say that I'm pretty satisfied with how it turned out. I've packaged readsb (as a replacement for dump1090), tar1090, tar1090-db and mlat-client (not used yet).

    Current status:

    • Able to set-up a working receiver using combustion+ignition (web app based on Fuel Ignition)
    • Able to feed to various feeds using the Beast protocol (Airplanes.live, ADSB.fi, ADSB.lol, ADSBExchange.com, Flyitalyadsb.com, Planespotters.net)
    • Able to feed to Flightradar24 (initial-setup available but NOT tested! I've only tested using a key I already had)
    • Local web interface (tar1090) to easily visualize the results
    • Cockpit pre-configured to ease maintenance

    What's missing:

    • MLAT (Multilateration) support. I've packaged mlat-client already, but I have to wire it up
    • FlightAware support

    Give it a go at https://g7.github.io/adsbreceiver/ !

    Project links


    Write a shell extension for GNOME by tdz

    Description

    I usually do kernel and systems programming. This project is about learning more about the userspace and application side. Writing an extension to gnome-shell seems like a good place to start. The GNOME shell is scriptable via JavaScript and a number of such extension is available from upstream.

    On X11, there used to be a toy rsp. screensaver called XPenguins. After the desktop being idle for some time, it sent penguins falling down the screen and walking along window borders. It doesn't work any longer with Wayland-based compositing, but re-implementing it as extension for the GNOME shell might be possible. There already existed a port around a decade ago that could serve as starting point.

    Goals

    • Learn about how shell extensions work and how to write one
    • See if XPenguins can be converted
    • If successful, try to upstream the result

    Resources


    Improve Development Environment on Uyuni by mbussolotto

    Description

    Currently create a dev environment on Uyuni might be complicated. The steps are:

    • add the correct repo
    • download packages
    • configure your IDE (checkstyle, format rules, sonarlint....)
    • setup debug environment
    • ...

    The current doc can be improved: some information are hard to be find out, some others are completely missing.

    Dev Container might solve this situation.

    Goals

    Uyuni development in no time:

    • using VSCode:
      • setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
      • dev container should contains all dependencies
      • setup debug environment
    • implement a GitHub Workspace solution
    • re-write documentation

    Lots of pieces are already implemented: we need to connect them in a consistent solution.

    Resources

    • https://github.com/uyuni-project/uyuni/wiki


    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    AI + Board Games

    Board games have long been fertile ground for AI innovation, pushing the boundaries of capabilities such as strategy, adaptability, and real-time decision-making - from Deep Blue's chess mastery to AlphaZero’s domination of Go. Games aren’t just fun: they’re complex, dynamic problems that often mirror real-world challenges, making them interesting from an engineering perspective.

    As avid board gamers, aspiring board game designers, and engineers with careers in open source infrastructure, we’re excited to dive into the latest AI techniques first-hand.

    Our goal is to develop an all-open-source, all-green AWS-based stack powered by some serious hardware to drive our board game experiments forward!


    Project Goals

    1. Set Up the Stack:

      • Install and configure the TAG and PyTAG frameworks on SUSE Linux Enterprise Base Container Images.
      • Integrate with the SUSE AI stack for GPU-accelerated training on AWS.
      • Validate a sample GPU-accelerated PyTAG workload on SUSE AI.
      • Ensure the setup is entirely repeatable with Terraform and configuration scripts, documenting results along the way.
    2. Design and Implement AI Agents:

      • Develop AI agents for the two board games, incorporating Statistical Forward Planning and Deep Reinforcement Learning techniques.
      • Fine-tune model parameters to optimize game-playing performance.
      • Document the advantages and limitations of each technique.
    3. Test, Analyze, and Refine:

      • Conduct AI vs. AI and AI vs. human matches to evaluate agent strategies and performance.
      • Record insights, document learning outcomes, and refine models based on real-world gameplay.

    Technical Stack

    • Frameworks: TAG and PyTAG for AI agent development
    • Platform: SUSE AI
    • Tools: AWS for high-performance GPU acceleration

    Why This Project Matters

    This project not only deepens our understanding of AI techniques by doing but also showcases the power and flexibility of SUSE’s open-source infrastructure for supporting high-level AI projects. By building on an all-open-source stack, we aim to create a pathway for other developers and AI enthusiasts to explore, experiment, and deploy their own innovative projects within the open-source space.


    Our Motivation

    We believe hands-on experimentation is the best teacher.

    Combining our engineering backgrounds with our passion for board games, we’ll explore AI in a way that’s both challenging and creatively rewarding. Our ultimate goal? To hack an AI agent that’s as strategic and adaptable as a real human opponent (if not better!) — and to leverage it to design even better games... for humans to play!


    ADS-B receiver with MicroOS by epaolantonio

    I would like to put one of my spare Raspberry Pis to good use, and what better way to see what flies above my head at any time? add-emoji

    There are various ready-to-use distros already set-up to provide feeder data to platforms like Flightradar24, ADS-B Exchange, FlightAware etc... The goal here would be to do it using MicroOS as a base and containerized decoding of ADS-B data (via tools like dump1090) and web frontend (tar1090).

    Goals

    • Create a working receiver using MicroOS as a base, and containers based on Tumbleweed
    • Make it easy to install
    • Optimize for maximum laziness (i.e. it should take care of itself with minimum intervention)

    Resources

    • 1x Small Board Computer capable of running MicroOS
    • 1x RTL2832U DVB-T dongle
    • 1x MicroSD card
    • https://github.com/antirez/dump1090
    • https://github.com/flightaware/dump1090 (dump1090 fork by FlightAware)
    • https://github.com/wiedehopf/tar1090

    Project status (2024-11-22)

    So I'd say that I'm pretty satisfied with how it turned out. I've packaged readsb (as a replacement for dump1090), tar1090, tar1090-db and mlat-client (not used yet).

    Current status:

    • Able to set-up a working receiver using combustion+ignition (web app based on Fuel Ignition)
    • Able to feed to various feeds using the Beast protocol (Airplanes.live, ADSB.fi, ADSB.lol, ADSBExchange.com, Flyitalyadsb.com, Planespotters.net)
    • Able to feed to Flightradar24 (initial-setup available but NOT tested! I've only tested using a key I already had)
    • Local web interface (tar1090) to easily visualize the results
    • Cockpit pre-configured to ease maintenance

    What's missing:

    • MLAT (Multilateration) support. I've packaged mlat-client already, but I have to wire it up
    • FlightAware support

    Give it a go at https://g7.github.io/adsbreceiver/ !

    Project links


    Port the classic browser game HackTheNet to PHP 8 by dgedon

    Description

    The classic browser game HackTheNet from 2004 still runs on PHP 4/5 and MySQL 5 and needs a port to PHP 8 and e.g. MariaDB.

    Goals

    • Port the game to PHP 8 and MariaDB 11
    • Create a container where the game server can simply be started/stopped

    Resources

    • https://github.com/nodeg/hackthenet


    Migrate from Docker to Podman by tjyrinki_suse

    Description

    I'd like to continue my former work on containerization of several domains on a single server by changing from Docker containers to Podman containers. That will need an OS upgrade as well as Podman is not available in that old server version.

    Goals

    • Update OS.
    • Migrate from Docker to Podman.
    • Keep everything functional, including the existing "meanwhile done" additional Docker container that is actually being used already.
    • Keep everything at least as secure as currently. One of the reasons of having the containers is to isolate risks related to services open to public Internet.
    • Try to enable the Podman use in production.
    • At minimum, learn about all of these topics.
    • Optionally, improve Ansible side of things as well...

    Resources

    A search engine is one's friend. Migrating from Docker to Podman, and from docker-compose to podman-compose.