Description
With SUSE Manager, we can build OS Images using KIWI and container images. As we have Edge Image Builder, we want to see if it is possible to use SUSE Manager to build/customize OS Images by integrating Edge Image Builder as well.
Goals
To make the process easier for customers, a single-build pipeline that automatically adds the combustion and artifact files from the EIB process is desirable.
- Kiwi and EIB need to come from a Git Repository.
- Kiwi and EIB need to be running as containers.
- Configuration options for the images used for Kiwi and EIB build.
- X86 and ARM64 Support.
- SUSE Manager 4.3 and 5.X Support.
- SLES 15 SP6 / SL Micro 6.0 and SL Micro 6.1 Support.
Outcome
- Change the Kiwi build process to use Podman with the Kiwi image registry.suse.com/bci/kiwi:10.1.10
- Change the Edge Image Builder to produce a combustion-only ISO
- Extract the contents and write them to a dedicated /OEM partition integrated via Kiwi into the ISO Kiwi creates.
Sources and PRs
- https://github.com/Martin-Weiss/kiwi-image-micro-gpu-60
- https://github.com/suse-edge/edge-image-builder/pull/618
- https://github.com/uyuni-project/uyuni/pull/9507
This project is part of:
Hack Week 24
Activity
Comments
-
3 months ago by joachimwerner | Reply
I'm planning to join this project. Some early thoughts and personal perspective:
- I'm mostly working on an Arm Mac, so I'll be able to validate whether all bits and pieces are "Mac-safe" and "aarch64-safe".
- Linux physical machines/VMs vs. containers: Currently, the SUSE Manager KIWI and Dockerfile build jobs are running on a Salt-enabled Linux instance (physical or virtual). EIB (and soon KIWI) are running in a container that can be managed with podman (or potentially Kubernetes). So I see several separate "sub-goals" we could address with this project:
- Keep the current paradigm and "just" create a build state that uses podman on a Linux system to do the EIB build
- Create a new type of container just (podman) and/or Kubernetes host build "server" that would allow running all kinds of containerised jobs through SUSE Manager (including the EIB and soon KIWI build jobs).
- Look into chaining jobs as an advanced goal (important for use cases where you first want to build a base image using KIWI and then customise that image in an EIB "2nd stage").
- Potentially automating build chains based on triggers like "new/updated package was added to repo" (but that could soon lead to re-inventing OBS or so )
- At least for pilot/labs scenarios, I'd love to see the build jobs running on the same podman-enabled host as the SUSE Manager Server instance. Maybe not recommended for production, but would make demos/training labs much easier to set up.
-
3 months ago by joachimwerner | Reply
We might need someone with Java skills for the UI part. I've had a first look at the code, and the current UI/business logic implementation is hardcore Java.
Similar Projects
Edge Image Builder and mkosi for Uyuni by oholecek
Description
One part of Uyuni system management tool is ability to build custom images. Currently Uyuni supports only Kiwi image builder.
Kiwi however is not the only image building system out there and with the goal to also become familiar with other systems, this projects aim to add support for Edge Image builder and systemd's mkosi systems.
Goals
Uyuni is able to
- provision EIB and mkosi build hosts
- build EIB and mkosi images and store them
Resources
- Uyuni - https://github.com/uyuni-project/uyuni
- Edge Image builder - https://github.com/suse-edge/edge-image-builder
- mkosi - https://github.com/systemd/mkosi
Edge Image Builder and mkosi for Uyuni by oholecek
Description
One part of Uyuni system management tool is ability to build custom images. Currently Uyuni supports only Kiwi image builder.
Kiwi however is not the only image building system out there and with the goal to also become familiar with other systems, this projects aim to add support for Edge Image builder and systemd's mkosi systems.
Goals
Uyuni is able to
- provision EIB and mkosi build hosts
- build EIB and mkosi images and store them
Resources
- Uyuni - https://github.com/uyuni-project/uyuni
- Edge Image builder - https://github.com/suse-edge/edge-image-builder
- mkosi - https://github.com/systemd/mkosi
Small healthcheck tool for Longhorn by mbrookhuis
Project Description
We have often problems (e.g. pods not starting) that are related to PVCs not running, cluster (nodes) not all up or deployments not running or completely running. This all prevents administration activities. Having something that can regular be run to validate the status of the cluster would be helpful, and not as of today do a lot of manual tasks.
As addition (read enough time), we could add changing reservation, adding new disks, etc. --> This didn't made it. But the scripts can easily be adopted.
This tool would decrease troubleshooting time, giving admins rights to the rancher GUI and could be used in automation.
Goal for this Hackweek
At the end we should have a small python tool that is doing a (very) basic health check on nodes, deployments and PVCs. First attempt was to make it in golang, but that was taking to much time.
Overview
This tool will run a simple healthcheck on a kubernetes cluster. It will perform the following actions:
node check: This will check all nodes, and display the status and the k3s version. If the status of the nodes is not "Ready" (this should be only reported), the cluster will be reported as having problems
deployment check: This check will list all deployments, and display the number of expected replicas and the used replica. If there are unused replicas this will be displayed. The cluster will be reported as having problems.
pvc check: This check will list of all pvc's, and display the status and the robustness. If the robustness is not "Healthy", the cluster will be reported as having problems.
If there is a problem registered in the checks, there will be a warning that the cluster is not healthy and the program will exit with 1.
The script has 1 mandatory parameter and that is the kubeconf of the cluster or of a node off the cluster.
The code is writen for Python 3.11, but will also work on 3.6 (the default with SLES15.x). There is a venv present that will contain all needed packages. Also, the script can be run on the cluster itself or any other linux server.
Installation
To install this project, perform the following steps:
- Create the directory /opt/k8s-check
mkdir /opt/k8s-check
- Copy all the file to this directory and make the following changes:
chmod +x k8s-check.py