All other distributions have scanmem/gameconqueror packages. scanmem is a command line memory scanner to locate variables in memory and GameConqueror is the Python/GTK3 front-end for it which also provides game trainer features. But it is not only a game cheating tool. It can also help testing applications, debugging memory issues, watching variables in memory or it can be used for reverse-engineering. Hackers also use it for things like ping spoofing.
As the upstream maintainer of this tool I'd like to bring it to openSUSE and maintain it there.
In the previous hackweek I've been blocked by important L3s and I've noticed the need for many more upstream changes. These have been implemented, the new version v0.16 has been pushed to Debian already, and this can continue now.
This project is part of:
Hack Week 14 Hack Week 15
Activity
Comments
-
over 8 years ago by sparschauer | Reply
Project started with delay. Two further upstream commits could be applied already to support openSUSE better. First attempt to be included in devel:tools has been rejected with something like: "Please run spec-cleaner." Further rpmlint warnings/errors have been fixed. A major issue has been found: libscanmem is not compiled separately and is under GPLv3 this way. Asked former upstream maintainers to confirm license change to LGPLv3 for libscanmem.
-
over 7 years ago by sparschauer | Reply
@pluskalm did the initial packaging based on my work without informing me. GameConqueror is not provided due to security reasons (pkexec) it seems. I've managed to get version 0.16 accepted to devel:tools. I've fixed the bug that the GC .po files are installed although GC is not built upstream.
-
over 6 years ago by sparschauer | Reply
Latest 0.17 with major performance improvement is available on Leap 15 and together with GameConqueror from my home project.
Similar Projects
Add a machine-readable output to dmidecode by jdelvare
Description
There have been repeated requests for a machine-friendly dmidecode output over the last decade. During Hack Week 19, 5 years ago, I prepared the code to support alternative output formats, but didn't have the time to go further. Last year, Jiri Hnidek from Red Hat Linux posted a proof-of-concept implementation to add JSON output support. This is a fairly large pull request which needs to be carefully reviewed and tested.
Goals
Review Jiri's work and provide constructive feedback. Merge the code if acceptable. Evaluate the costs and benefits of using a library such as json-c.
FizzBuzz OS by mssola
Project Description
FizzBuzz OS (or just fbos
) is an idea I've had in order to better grasp the fundamentals of the low level of a RISC-V machine. In practice, I'd like to build a small Operating System kernel that is able to launch three processes: one that simply prints "Fizz", another that prints "Buzz", and the third which prints "FizzBuzz". These processes are unaware of each other and it's up to the kernel to schedule them by using the timer interrupts as given on openSBI (fizz on % 3 seconds, buzz on % 5 seconds, and fizzbuzz on % 15 seconds).
This kernel provides just one system call, write
, which allows any program to pass the string to be written into stdout.
This project is free software and you can find it here.
Goal for this Hackweek
- Better understand the RISC-V SBI interface.
- Better understand RISC-V in privileged mode.
- Have fun.
Resources
Make more sense of openQA test results using AI by livdywan
Description
AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.
User Story
Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?
Goals
- Leverage a chat interface to help Allison
- Create a model from scratch based on data from openQA
- Proof of concept for automated analysis of openQA test results
Bonus
- Use AI to suggest solutions to merge conflicts
- This would need a merge conflict editor that can suggest solving the conflict
- Use image recognition for needles
Resources
Timeline
Day 1
- Conversing with open-webui to teach me how to create a model based on openQA test results
- Asking for example code using TensorFlow in Python
- Discussing log files to explore what to analyze
- Drafting a new project called Testimony (based on Implementing a containerized Python action) - the project name was also suggested by the assistant
Day 2
- Using NotebookLLM (Gemini) to produce conversational versions of blog posts
- Researching the possibility of creating a project logo with AI
- Asking open-webui, persons with prior experience and conducting a web search for advice
Highlights
- I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
- Convincing the chat interface to produce code specific to my use case required very explicit instructions.
- Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
- Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses
Outcomes
Team Hedgehogs' Data Observability Dashboard by gsamardzhiev
Description
This project aims to develop a comprehensive Data Observability Dashboard that provides r insights into key aspects of data quality and reliability. The dashboard will track:
Data Freshness: Monitor when data was last updated and flag potential delays.
Data Volume: Track table row counts to detect unexpected surges or drops in data.
Data Distribution: Analyze data for null values, outliers, and anomalies to ensure accuracy.
Data Schema: Track schema changes over time to prevent breaking changes.
The dashboard's aim is to support historical tracking to support proactive data management and enhance data trust across the data function.
Goals
Although the final goal is to create a power bi dashboard that we are able to monitor, our goals is to 1. Create the necessary tables that track the relevant metadata about our current data 2. Automate the process so it runs in a timely manner
Resources
AWS Redshift; AWS Glue, Airflow, Python, SQL
Why Hedgehogs?
Because we like them.
Symbol Relations by hli
Description
There are tools to build function call graphs based on parsing source code, for example, cscope
.
This project aims to achieve a similar goal by directly parsing the disasembly (i.e. objdump) of a compiled binary. The assembly code is what the CPU sees, therefore more "direct". This may be useful in certain scenarios, such as gdb/crash debugging.
Detailed description and Demos can be found in the README file:
Supports x86 for now (because my customers only use x86 machines), but support for other architectures can be added easily.
Tested with python3.6
Goals
Any comments are welcome.
Resources
https://github.com/lhb-cafe/SymbolRelations
symrellib.py: mplements the symbol relation graph and the disassembly parser
symrel_tracer*.py: implements tracing (-t option)
symrel.py: "cli parser"
Ansible for add-on management by lmanfredi
Description
Machines can contains various combinations of add-ons and are often modified during the time.
The list of repos can change so I would like to create an automation able to reset the status to a given state, based on metadata available for these machines
Goals
Create an Ansible automation able to take care of add-on (repo list) configuration using metadata as reference
Resources
- Machines
- Repositories
- Developing modules
- Basic VM Guest management
- Module
zypper_repository_list
- ansible-collections community.general
Results
Created WIP project Ansible-add-on-openSUSE
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
AI + Board Games
Board games have long been fertile ground for AI innovation, pushing the boundaries of capabilities such as strategy, adaptability, and real-time decision-making - from Deep Blue's chess mastery to AlphaZero’s domination of Go. Games aren’t just fun: they’re complex, dynamic problems that often mirror real-world challenges, making them interesting from an engineering perspective.
As avid board gamers, aspiring board game designers, and engineers with careers in open source infrastructure, we’re excited to dive into the latest AI techniques first-hand.
Our goal is to develop an all-open-source, all-green AWS-based stack powered by some serious hardware to drive our board game experiments forward!
Project Goals
Set Up the Stack:
- Install and configure the TAG and PyTAG frameworks on SUSE Linux Enterprise Base Container Images.
- Integrate with the SUSE AI stack for GPU-accelerated training on AWS.
- Validate a sample GPU-accelerated PyTAG workload on SUSE AI.
- Ensure the setup is entirely repeatable with Terraform and configuration scripts, documenting results along the way.
Design and Implement AI Agents:
- Develop AI agents for the two board games, incorporating Statistical Forward Planning and Deep Reinforcement Learning techniques.
- Fine-tune model parameters to optimize game-playing performance.
- Document the advantages and limitations of each technique.
Test, Analyze, and Refine:
- Conduct AI vs. AI and AI vs. human matches to evaluate agent strategies and performance.
- Record insights, document learning outcomes, and refine models based on real-world gameplay.
Technical Stack
- Frameworks: TAG and PyTAG for AI agent development
- Platform: SUSE AI
- Tools: AWS for high-performance GPU acceleration
Why This Project Matters
This project not only deepens our understanding of AI techniques by doing but also showcases the power and flexibility of SUSE’s open-source infrastructure for supporting high-level AI projects. By building on an all-open-source stack, we aim to create a pathway for other developers and AI enthusiasts to explore, experiment, and deploy their own innovative projects within the open-source space.
Our Motivation
We believe hands-on experimentation is the best teacher.
Combining our engineering backgrounds with our passion for board games, we’ll explore AI in a way that’s both challenging and creatively rewarding. Our ultimate goal? To hack an AI agent that’s as strategic and adaptable as a real human opponent (if not better!) — and to leverage it to design even better games... for humans to play!
Symbol Relations by hli
Description
There are tools to build function call graphs based on parsing source code, for example, cscope
.
This project aims to achieve a similar goal by directly parsing the disasembly (i.e. objdump) of a compiled binary. The assembly code is what the CPU sees, therefore more "direct". This may be useful in certain scenarios, such as gdb/crash debugging.
Detailed description and Demos can be found in the README file:
Supports x86 for now (because my customers only use x86 machines), but support for other architectures can be added easily.
Tested with python3.6
Goals
Any comments are welcome.
Resources
https://github.com/lhb-cafe/SymbolRelations
symrellib.py: mplements the symbol relation graph and the disassembly parser
symrel_tracer*.py: implements tracing (-t option)
symrel.py: "cli parser"
Switch software-o-o to parse repomd data by hennevogel
Currently software.opensuse.org search is using the OBS binary search for everything, even for packages inside the openSUSE distributions. Let's switch this to use repomd data from download.opensuse.org
A CLI for Harvester by mohamed.belgaied
[comment]: # Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI [comment]: # Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. [comment]: # Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.
Project Description
Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as:
harvester vm create my-vm --count 5
to create 5 VMs named my-vm-01
to my-vm-05
.
Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.
Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli
Done in previous Hackweeks
- Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
- Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE
Goal for this Hackweek
The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.
Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it
Issue list is here: https://github.com/belgaied2/harvester-cli/issues
Resources
The project is written in Go, and using client-go
the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact).
Welcome contributions are:
- Testing it and creating issues
- Documentation
- Go code improvement
What you might learn
Harvester CLI might be interesting to you if you want to learn more about:
- GitHub Actions
- Harvester as a SUSE Product
- Go programming language
- Kubernetes API
Fix RSpec tests in order to replace the ruby-ldap rubygem in OBS by enavarro_suse
Description
"LDAP mode is not official supported by OBS!". See: config/options.yml.example#L100-L102
However, there is an RSpec file which tests LDAP mode in OBS. These tests use the ruby-ldap
rubygem, mocking the results returned by a LDAP server.
The ruby-ldap
rubygem seems no longer maintaned, and also prevents from updating to a more recent Ruby version. A good alternative is to replace it with the net-ldap
rubygem.
Before replacing the ruby-ldap
rubygem, we should modify the tests so the don't mock the responses of a LDAP server. Instead, we should modify the tests and run them against a real LDAP server.
Goals
Goals of this project:
- Modify the RSpec tests and run them against a real LDAP server
- Replace the
net-ldap
rubygem with theruby-ldap
rubygem
Achieving the above mentioned goals will:
- Permit upgrading OBS from Ruby 3.1 to Ruby 3.2
- Make a step towards officially supporting LDAP in OBS.
Resources
Bootstrap openSUSE on LoongArch by glaubitz
Description
LoongArch is a new architecture from China which has its roots in the MIPS architecture. It has been created by Loongson and is already supported by Debian Ports, Gentoo and Loongnix.
Upstream support for LoongArch is already quite complete which includes LLVM, Rust, Golang, GRUB, QEMU, LibreOffice and many more. In Debian Ports, where the port is called "loong64", more than 95% of the whole Debian archive have been successfully built for LoongArch.
QEMU support is rather complete and stable such that packages can be built in emulated environments. Hardware can also be requested by Loongson on request for free. Access to real hardware is also provided through the GCC Compile Farm.
Goals
The initial goal should be to add LoongArch to OBS and build a minimal set of packages.
Resources
- Introduction to LoongArch: https://docs.kernel.org/arch/loongarch/introduction.html
- LoongArch community on Github: https://github.com/loongarchlinux
- Debian Ports repository for loong64: http://ftp.ports.debian.org/debian-ports/pool-loong64/main/
- Gentoo stage3 for loong: https://www.gentoo.org/downloads/#loong
obs-service-vendor_node_modules by cdimonaco
Description
When building a javascript package for obs, one option is to use https://github.com/openSUSE/obs-service-node_modules as source service to get the project npm dependencies available for package bulding.
obs-service-vendornodemodules aims to be a source service that vendors npm dependencies, installing them with npm install (optionally only production ones) and then creating a tar package of the installed dependencies.
The tar will be used as source in the package building definitions.
Goals
- Create an obs service package that vendors the npm dependencies as tar archive.
- Maybe add some macros to unpack the vendor package in the specfiles
Resources
Switch software-o-o to parse repomd data by hennevogel
Currently software.opensuse.org search is using the OBS binary search for everything, even for packages inside the openSUSE distributions. Let's switch this to use repomd data from download.opensuse.org
Explore the integration between OBS and GitHub by pdostal
Project Description
The goals:
1) When GitHub pull request is created or modified the OBS project will be forked and the build results reported back to GitHub. 2) When new version of the GitHub project will be published the OBS will redownload the source and rebuild the project.
Goal for this Hackweek
Do as much as possible, blog about it and maybe use it another existing project.
Resources
- The Blog post
- Issue: poo#123858 - build.opensuse.org: /usr/lib/obs/service//go_modules.service No such file or directory