Project Description
Implement a checksum algorithm for BTRFS that uses and authenticated (keyed) hash. There are 2 cryptographically secure hashes supported by btrfs, sha256 and blake2b.
Status: prototypes exist for most of the goals below, need polishing and testing
Goals for Hackweek 22
This has been ongoing, there's prototype for the kernel side but is not complete and does not cover the whole use case. One drawback for the key requirement is that there's no way to verify the data/metadata validity without it. To address that, combine authenticated hash and a regular checksum into (e.g. split the 256 bits to 224 bits for sha256 and 32 bits for crc32c). To allow a use case with authenticated hash but without the private key stored on the host explore the public key signature for checksum.
- implement the basic authenticated hashes
- implement the combined authenticated and secondary hash
- finalize the interfaces (command line options, mount options), support for all commands
- bonus goal 1: implement checksum based on public key signature (DSA)
- bonus goal 2: prototype using blake3 and xxh3 as another types of cryptographic and checksum algorithms
Progress
- refactoring old branches, refreshing on to newer base (auth, auth+sum)
- implementing auth+sum in progs
- public key signature (example): implementing ->sign for ecdsa with p-256 curve
- XXH3 in kernel does not seem to be better than xxh64 (https://github.com/Cyan4973/xxHash/issues/793), the user space implementation heavily relies on SSE2 which is not easily available in kernel (FPU context switch overhead)
Goals for Hackweek 23
- put together user space library for ECC and ECDSA, using kernel code for parity and to verify the functionality
- start again with the authenticated hashes, do all combinations of {sha256, blake2} x {none, crc32c, xxhash}, based on user feedback hardcoding the secondary hash to xxhash is not great, this is 6 new checksum algorithms
Progress
- refreshed code for kernel and btrfs-progs, closer to sending an RFC, some parts still missing (namely dealing with corner cases of secondary checksums in various contexts)
- new prototypes written and scrapped, ECC research continues
Looking for hackers with the skills:
This project is part of:
Hack Week 22 Hack Week 23
Activity
Comments
Be the first to comment!
Similar Projects
Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil
Join the Gitter channel! https://gitter.im/uyuni-project/hackweek
Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!
Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.
For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.
No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)
The idea is testing Salt (including bootstrapping with bootstrap script) and Salt-ssh clients
To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):
- Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
- Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
- Package management (install, remove, update...)
- Patching
- Applying any basic salt state (including a formula)
- Salt remote commands
- Bonus point: Java part for product identification, and monitoring enablement
- Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
- Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
- Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)
If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)
- If you don't have knowledge about some of the steps: ask the team
- If you still don't know what to do: switch to another distribution and keep testing.
This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)
In progress/done for Hack Week 25
Guide
We started writin a Guide: Adding a new client GNU Linux distribution to Uyuni at https://github.com/uyuni-project/uyuni/wiki/Guide:-Adding-a-new-client-GNU-Linux-distribution-to-Uyuni, to make things easier for everyone, specially those not too familiar wht Uyuni or not technical.
openSUSE Leap 16.0
The distribution will all love!
https://en.opensuse.org/openSUSE:Roadmap#DRAFTScheduleforLeap16.0
Curent Status We started last year, it's complete now for Hack Week 25! :-D
[W]Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file) NOTE: Done, client tools for SLMicro6 are using as those for SLE16.0/openSUSE Leap 16.0 are not available yet[W]Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)[W]Package management (install, remove, update...). Works, even reboot requirement detection
git-fs: file system representation of a git repository by fgonzalez
Description
This project aims to create a Linux equivalent to the git/fs concept from git9. Now, I'm aware that git provides worktrees, but they are not enough for many use cases. Having a read-only representation of the whole repository simplifies scripting by quite a bit and, most importantly, reduces disk space usage. For instance, during kernel livepatching development, we need to process and analyze the source code of hundreds of kernel versions simultaneously.This is rather painful with git-worktrees, as each kernel branch requires no less than 1G of disk space.
As for the technical details, I'll implement the file system using FUSE. The project itself should not take much time to complete, but let's see where it takes me.
I'll try to keep the same design as git9, so the file system will look something like:
/mnt/git
+-- ctl
+-- HEAD
| +-- tree
| | +--files
| | +--in
| | +--head
| |
| +-- hash
| +-- msg
| +-- parent
|
+-- branch
| |
| +-- heads
| | +-- master
| | +-- [commit files, see HEAD]
| +-- remotes
| +-- origin
| +-- master
| +-- [commit files, see HEAD]
+-- object
+-- 00051fd3f066e8c05ae7d3cf61ee363073b9535f # blob contents
+-- 00051fd3f066e8c05ae7d3cf61ee363073b9535c
+-- [tree contents, see HEAD/tree]
+-- 3f5dbc97ae6caba9928843ec65fb3089b96c9283
+-- [commit files, see HEAD]
So, if you wanted to look at the commit message of the current branch, you could simply do:
cat /mnt/git/HEAD/msg
No collaboration needed. This is a solo project.
Goals
Implement a working prototype.
Measure and improve the performance if possible. This step will be the most crucial one. User space filesystems are slower by nature.
Resources
https://docs.kernel.org/filesystems/fuse/fuse.html
Enhance setup wizard for Uyuni by PSuarezHernandez
Description
This project wants to enhance the intial setup on Uyuni after its installation, so it's easier for a user to start using with it.
Uyuni currently uses "uyuni-tools" (mgradm) as the installation entrypoint, to trigger the installation of Uyuni in the given host, but does not really perform an initial setup, for instance:
- user creation
- adding products / channels
- generating bootstrap repos
- create activation keys
- ...
Goals
- Provide initial setup wizard as part of mgradm uyuni installation
Resources
pudc - A PID 1 process that barks to the internet by mssola
Description
As a fun exercise in order to dig deeper into the Linux kernel, its interfaces, the RISC-V architecture, and all the dragons in between; I'm building a blog site cooked like this:
- The backend is written in a mixture of C and RISC-V assembly.
- The backend is actually PID1 (for real, not within a container).
- We poll and parse incoming HTTP requests ourselves.
- The frontend is a mere HTML page with htmx.
The project is meant to be Linux-specific, so I'm going to use io_uring, pidfs, namespaces, and Linux-specific features in order to drive all of this.
I'm open for suggestions and so on, but this is meant to be a solo project, as this is more of a learning exercise for me than anything else.
Goals
- Have a better understanding of different Linux features from user space down to the kernel internals.
- Most importantly: have fun.
Resources
Add Qualcomm Snapdragon 765G (SM7250) basic device tree to mainline linux kernel by pvorel
Qualcomm Snapdragon 765G (SM7250) (smartphone SoC) has no support in the linux kernel, nor in u-boot. Try to add basic device tree support. The hardest part will be to create boot.img which will be accepted by phone.
UART is available for smartphone :).
bpftrace contribution by mkoutny
Description
bpftrace is a great tool, no need to sing odes to it here. It can access any kernel data and process them in real time. It provides helpers for some common Linux kernel structures but not all.
Goals
- set up bpftrace toolchain
- learn about bpftrace implementation and internals
- implement support for
percpu_counters - look into some of the first issues
- send a refined PR (on Thu)
Resources
Backporting patches using LLM by jankara
Description
Backporting Linux kernel fixes (either for CVE issues or as part of general git-fixes workflow) is boring and mostly mechanical work (dealing with changes in context, renamed variables, new helper functions etc.). The idea of this project is to explore usage of LLM for backporting Linux kernel commits to SUSE kernels using LLM.
Goals
- Create safe environment allowing LLM to run and backport patches without exposing the whole filesystem to it (for privacy and security reasons).
- Write prompt that will guide LLM through the backporting process. Fine tune it based on experimental results.
- Explore success rate of LLMs when backporting various patches.
Resources
- Docker
- Gemini CLI
Repository
Current version of the container with some instructions for use are at: https://gitlab.suse.de/jankara/gemini-cli-backporter
pudc - A PID 1 process that barks to the internet by mssola
Description
As a fun exercise in order to dig deeper into the Linux kernel, its interfaces, the RISC-V architecture, and all the dragons in between; I'm building a blog site cooked like this:
- The backend is written in a mixture of C and RISC-V assembly.
- The backend is actually PID1 (for real, not within a container).
- We poll and parse incoming HTTP requests ourselves.
- The frontend is a mere HTML page with htmx.
The project is meant to be Linux-specific, so I'm going to use io_uring, pidfs, namespaces, and Linux-specific features in order to drive all of this.
I'm open for suggestions and so on, but this is meant to be a solo project, as this is more of a learning exercise for me than anything else.
Goals
- Have a better understanding of different Linux features from user space down to the kernel internals.
- Most importantly: have fun.
Resources
Improve UML page fault handler by ptesarik
Description
Improve UML handling of segmentation faults in kernel mode. Although such page faults are generally caused by a kernel bug, it is annoying if they cause an infinite loop, or panic the kernel. More importantly, a robust implementation allows to write KUnit tests for various guard pages, preventing potential kernel self-protection regressions.
Goals
Convert the UML page fault handler to use oops_* helpers, go through a few review rounds and finally get my patch series merged in 6.14.
Resources
Wrong initial attempt: https://lore.kernel.org/lkml/20231215121431.680-1-petrtesarik@huaweicloud.com/T/