RISC-V boot deep dive (Boot FLOW from 0 to Linux Kernel)
Make RISC-V boot like rest of industry U-boot for embedded, UEFI for consumer and servers
Deep dive on RISC-V boot flow started from openSBI.
- Mode switching (U/S/H/M), SBI calls, platform ops .. , etc.
- Embedded boot sprawl: U-boot vs edk2/uEFI with GRUB2
The latest code base of OpenSBI follow-up.
EDKII (edk2) support status on RISC-V: uEFI support to run GRUB2 or load kernel directly as EFI STUB
Trace RISC-V’s efistub implementation in LINUX.
RISC-V ISA study.
Resources
- An introduction to the RISCV Architecture
- OpenSBI on github
- RISC-V OpenSBI Deep Dive (pdf 2019)
- An Introduction to RISC-V Boot Flow (pdf 2019)
- RISC-V Boot flow: What's next ? (FOSSDEM 2020)
- EDK2 UEFI on RISC-V (FOSDEM 2021)
- kernel.org - RISC-V efistub lib (.c)
- kernel.org - RISC-V Runtime (.c)
- kernel.org - RISC-V sbi calls on cpu ops (.c)
kernel.org - RISC-V sbi ecall interface (.c)
What was done for ARM in past ?
Linux kernel EFI boot Stub
Soft RISC-V by QEMU
- https://risc-v-getting-started-guide.readthedocs.io/en/latest/linux-qemu.html
- https://en.opensuse.org/openSUSE:RISC-V
Berry inspiration
https://wiki.debian.org/RaspberryPi4#U-boot
Embedded Linux Boot Process
This project is part of:
Hack Week 20
Activity
Comments
Be the first to comment!
Similar Projects
Create openSUSE images for Arm/RISC-V boards by avicenzi
Project Description
Create openSUSE images (or test generic EFI images) for Arm and/or RISC-V boards that are not yet supported.
Goal for this Hackweek
Create bootable images of Tumbleweed for SBCs that currently have no images available or are untested.
Consider generic EFI images where possible, as some boards can hold a bootloader.
Document in the openSUSE Wiki how to flash and use the image for a given board.
Boards that I have around and there are no images:
- Rock 3B
- Nano PC T3 Plus
- Lichee RV D1
- StartFive VisionFive (has some image needs testing)
Hack Week 22
Hack Week 21
Resources
pudc - A PID 1 process that barks to the internet by mssola
Description
As a fun exercise in order to dig deeper into the Linux kernel, its interfaces, the RISC-V architecture, and all the dragons in between; I'm building a blog site cooked like this:
- The backend is written in a mixture of C and RISC-V assembly.
- The backend is actually PID1 (for real, not within a container).
- We poll and parse incoming HTTP requests ourselves.
- The frontend is a mere HTML page with htmx.
The project is meant to be Linux-specific, so I'm going to use io_uring, pidfs, namespaces, and Linux-specific features in order to drive all of this.
I'm open for suggestions and so on, but this is meant to be a solo project, as this is more of a learning exercise for me than anything else.
Goals
- Have a better understanding of different Linux features from user space down to the kernel internals.
- Most importantly: have fun.
Resources
pudc - A PID 1 process that barks to the internet by mssola
Description
As a fun exercise in order to dig deeper into the Linux kernel, its interfaces, the RISC-V architecture, and all the dragons in between; I'm building a blog site cooked like this:
- The backend is written in a mixture of C and RISC-V assembly.
- The backend is actually PID1 (for real, not within a container).
- We poll and parse incoming HTTP requests ourselves.
- The frontend is a mere HTML page with htmx.
The project is meant to be Linux-specific, so I'm going to use io_uring, pidfs, namespaces, and Linux-specific features in order to drive all of this.
I'm open for suggestions and so on, but this is meant to be a solo project, as this is more of a learning exercise for me than anything else.
Goals
- Have a better understanding of different Linux features from user space down to the kernel internals.
- Most importantly: have fun.
Resources