Hypothesis is a python property based testing framework inspired by quickcheck.

My goal was to get familiar with the docs and eventually apply the knowledge to the testing of SES products.

HYPOTHESIS HOMEPAGE

http://hypothesis.works/

Looking for hackers with the skills:

python testing fuzzying quickcheck

This project is part of:

Hack Week 14

Activity

  • 3 months ago: francqo liked this project.
  • 3 months ago: francqo joined this project.
  • over 9 years ago: dwaas added keyword "fuzzying" to this project.
  • over 9 years ago: dwaas added keyword "quickcheck" to this project.
  • over 9 years ago: dwaas added keyword "python" to this project.
  • over 9 years ago: dwaas added keyword "testing" to this project.
  • over 9 years ago: dwaas started this project.
  • over 9 years ago: dwaas originated this project.

  • Comments

    • dwaas
      over 9 years ago by dwaas | Reply

      At the end of the week I played mostly with the Stateful Testing tools. Tried to apply it to the tests of the rbd module in SES but didn't finish due to time limitations and shallow python knowledge.

    Similar Projects

    HTTP API for nftables by crameleon

    Background

    The idea originated in https://progress.opensuse.org/issues/164060 and is about building RESTful API which translates authorized HTTP requests to operations in nftables, possibly utilizing libnftables-json(5).

    Originally, I started developing such an interface in Go, utilizing https://github.com/google/nftables. The conversion of string networks to nftables set elements was problematic (unfortunately no record of details), and I started a second attempt in Python, which made interaction much simpler thanks to native nftables Python bindings.

    Goals

    1. Find and track the issue with google/nftables
    2. Revisit and polish the Go or Python code (prefer Go, but possibly depends on implementing missing functionality), primarily the server component
    3. Finish functionality to interact with nftables sets (retrieving and updating elements), which are of interest for the originating issue
    4. Align test suite
    5. Packaging

    Resources

    • https://git.netfilter.org/nftables/tree/py/src/nftables.py
    • https://git.com.de/Georg/nftables-http-api (to be moved to GitHub)
    • https://build.opensuse.org/package/show/home:crameleon:containers/pytest-nftables-container

    Results

    • Go nftables issue was related to set elements needing to be added with different start and end addresses - coincidentally, this was recently discovered by someone else, who added a useful helper function for this: https://github.com/google/nftables/pull/342.

    Side results

    Upon starting to unify the structure and implementing more functionality, missing JSON output support was noticed for some subcommands in libnftables. I am submitting patches as needed:

    • https://lore.kernel.org/netfilter-devel/20251203131736.4036382-2-georg@syscid.com/T/#u


    Update M2Crypto by mcepl

    There are couple of projects I work on, which need my attention and putting them to shape:

    Goal for this Hackweek

    • Put M2Crypto into better shape (most issues closed, all pull requests processed)
    • More fun to learn jujutsu
    • Play more with Gemini, how much it help (or not).
    • Perhaps, also (just slightly related), help to fix vis to work with LuaJIT, particularly to make vis-lspc working.


    Enhance git-sha-verify: A tool to checkout validated git hashes by gpathak

    Description

    git-sha-verify is a simple shell utility to verify and checkout trusted git commits signed using GPG key. This tool helps ensure that only authorized or validated commit hashes are checked out from a git repository, supporting better code integrity and security within the workflow.

    Supports:

    • Verifying commit authenticity signed using gpg key
    • Checking out trusted commits

    Ideal for teams and projects where the integrity of git history is crucial.

    Goals

    A minimal python code of the shell script exists as a pull request.

    The goal of this hackweek is to:

    • DONE: Add more unit tests
      • New and more tests can be added later
    • Make the python code modular
    • DONE: Add code coverage if possible

    Resources


    Bring to Cockpit + System Roles capabilities from YAST by miguelpc

    Bring to Cockpit + System Roles features from YAST

    Cockpit and System Roles have been added to SLES 16 There are several capabilities in YAST that are not yet present in Cockpit and System Roles We will follow the principle of "automate first, UI later" being System Roles the automation component and Cockpit the UI one.

    Goals

    The idea is to implement service configuration in System Roles and then add an UI to manage these in Cockpit. For some capabilities it will be required to have an specific Cockpit Module as they will interact with a reasource already configured.

    Resources

    A plan on capabilities missing and suggested implementation is available here: https://docs.google.com/spreadsheets/d/1ZhX-Ip9MKJNeKSYV3bSZG4Qc5giuY7XSV0U61Ecu9lo/edit

    Linux System Roles:

    First meeting Hackweek catchup


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    openQA tests needles elaboration using AI image recognition by mdati

    Description

    In the openQA test framework, to identify the status of a target SUT image, a screenshots of GUI or CLI-terminal images, the needles framework scans the many pictures in its repository, having associated a given set of tags (strings), selecting specific smaller parts of each available image. For the needles management actually we need to keep stored many screenshots, variants of GUI and CLI-terminal images, eachone accompanied by a dedicated set of data references (json).

    A smarter framework, using image recognition based on AI or other image elaborations tools, nowadays widely available, could improve the matching process and hopefully reduce time and errors, during the images verification and detection process.

    Goals

    Main scope of this idea is to match a "graphical" image of the console or GUI status of a running openQA test, an image of a shell console or application-GUI screenshot, using less time and resources and with less errors in data preparation and use, than the actual openQA needles framework; that is:

    • having a given SUT (system under test) GUI or CLI-terminal screenshot, with a local distribution of pixels or text commands related to a running test status,
    • we want to identify a desired target, e.g. a screen image status or data/commands context,
      • based on AI/ML-pretrained archives containing object or other proper elaboration tools,
      • possibly able to identify also object not present in the archive, i.e. by means of AI/ML mechanisms.
    • the matching result should be then adapted to continue working in the openQA test, likewise and in place of the same result that would have been produced by the original openQA needles framework.
    • We expect an improvement of the matching-time(less time), reliability of the expected result(less error) and simplification of archive maintenance in adding/removing objects(smaller DB and less actions).

    Hackweek POC:

    Main steps

    • Phase 1 - Plan
      • study the available tools
      • prepare a plan for the process to build
    • Phase 2 - Implement
      • write and build a draft application
    • Phase 3 - Data
      • prepare the data archive from a subset of needles
      • initialize/pre-train the base archive
      • select a screenshot from the subset, removing/changing some part
    • Phase 4 - Test
      • run the POC application
      • expect the image type is identified in a good %.

    Resources

    First step of this project is quite identification of useful resources for the scope; some possibilities are:

    • SUSE AI and other ML tools (i.e. Tensorflow)
    • Tools able to manage images
    • RPA test tools (like i.e. Robot framework)
    • other.

    Project references


    Multimachine on-prem test with opentofu, ansible and Robot Framework by apappas

    Description

    A long time ago I explored using the Robot Framework for testing. A big deficiency over our openQA setup is that bringing up and configuring the connection to a test machine is out of scope.

    Nowadays we have a way¹ to deploy SUTs outside openqa, but we only use if for cloud tests in conjuction with openqa. Using knowledge gained from that project I am going to try to create a test scenario that replicates an openqa test but this time including the deployment and setup of the SUT.

    Goals

    Create a simple multimachine test scenario with the support server and SUT all created by the robot framework.

    Resources

    1. https://github.com/SUSE/qe-sap-deployment
    2. terraform-libvirt-provider


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt (including bootstrapping with bootstrap script) and Salt-ssh clients

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    In progress/done for Hack Week 25

    Guide

    We started writin a Guide: Adding a new client GNU Linux distribution to Uyuni at https://github.com/uyuni-project/uyuni/wiki/Guide:-Adding-a-new-client-GNU-Linux-distribution-to-Uyuni, to make things easier for everyone, specially those not too familiar wht Uyuni or not technical.

    openSUSE Leap 16.0

    The distribution will all love!

    https://en.opensuse.org/openSUSE:Roadmap#DRAFTScheduleforLeap16.0

    Curent Status We started last year, it's complete now for Hack Week 25! :-D

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file) NOTE: Done, client tools for SLMicro6 are using as those for SLE16.0/openSUSE Leap 16.0 are not available yet
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [W] Package management (install, remove, update...). Works, even reboot requirement detection