Project Description

Dictu is a new scripting language with features and capabilities of other major languages without giving up speed but also providing a familiar syntax and user experience. The hackweek effort would be a hard push towards features pushing Dictu closer to mainstream adoption.

Goal for this Hackweek

  • Docker images created and pushed to dockerhub per PR merge into the develop branch
  • RPM and deb packages when new release is tagged
  • Web Playground: similar to the play.golang.org site
  • Unicode support
  • Extend HTTP module to be able to download files
  • Add to Suse repositories for easy install and use
  • Linter

Resources

  • https://github.com/dictu-lang/Dictu
  • https://dictu-lang.com/
  • https://github.com/dictu-lang/Dictu/issues

Looking for hackers with the skills:

language c compiler compilers packaging packagemanagement

This project is part of:

Hack Week 22

Activity

  • about 1 month ago: gpathak disliked this project.
  • almost 3 years ago: rbonafiglia liked this project.
  • almost 3 years ago: gpathak liked this project.
  • almost 3 years ago: bdowns328 added keyword "packaging" to this project.
  • almost 3 years ago: bdowns328 added keyword "packagemanagement" to this project.
  • almost 3 years ago: bdowns328 started this project.
  • almost 3 years ago: bdowns328 added keyword "compilers" to this project.
  • almost 3 years ago: bdowns328 added keyword "compiler" to this project.
  • almost 3 years ago: bdowns328 added keyword "c" to this project.
  • almost 3 years ago: bdowns328 added keyword "language" to this project.
  • almost 3 years ago: bdowns328 originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    toki pona programing language by dgarcia

    Description

    Toki Pona is a philosophical and artistic constructed language designed for its small vocabulary, simplicity, and ease of acquisition.

    The idea is to bring the idea of simplicity to a new programing language using this language words and limitations to implement it.

    The name for this programming language could be: "toki ilo" or "ilo pona". I will ask the community to get other ideas and also to get feedback about the initial design.

    The idea is to start to implement something as a gcc frontend.

    Goals

    • The language design should be really simple but completely functional:
      • functions
      • variables
      • conditional
      • loop
      • data structures
    • The keywords should be from toki pona, and better if could be read as pseudo code in toki pona
    • It should be possible to "compile" code written in sitelen pona

    Resources


    Smart lighting with Pico 2 by jmodak

    Description

    I am trying to create a smart-lighting project with a Raspberry Pi Pico that reacts to a movie's visuals and audio that involves combining two distinct functions: ambient screen lighting(visual response) and sound-reactive lighting(audio response)

    Goals

    • Visuals: Capturing the screen's colour requires an external device to analyse screen content and send colour data to the MCU via serial communication.
    • Audio: A sound sensor module connected directly to the Pico that can detect sound volume.
    • Pico 2W: The MCU receives data fro, both inputs and controls an LED strip.

    Resources

    • Raspberry Pi Pico 2 W
    • RGB LED strip
    • Sound detecting sensor
    • Power supply
    • breadboard and wires


    pudc - A PID 1 process that barks to the internet by mssola

    Description

    As a fun exercise in order to dig deeper into the Linux kernel, its interfaces, the RISC-V architecture, and all the dragons in between; I'm building a blog site cooked like this:

    • The backend is written in a mixture of C and RISC-V assembly.
    • The backend is actually PID1 (for real, not within a container).
    • We poll and parse incoming HTTP requests ourselves.
    • The frontend is a mere HTML page with htmx.

    The project is meant to be Linux-specific, so I'm going to use io_uring, pidfs, namespaces, and Linux-specific features in order to drive all of this.

    I'm open for suggestions and so on, but this is meant to be a solo project, as this is more of a learning exercise for me than anything else.

    Goals

    • Have a better understanding of different Linux features from user space down to the kernel internals.
    • Most importantly: have fun.

    Resources


    x64id: An x86/x64 instruction disassembler by m.crivellari

    Description

    This is an old side project. An x86/x64 machine code decoder. It is useful to get instructions' length and identify each of its fields.

    Example:

    C7 85 68 FF FF FF 00 00 00 00

    This is the instruction:

    MOV DWORD PTR SS:[LOCAL.38],0

    What follows are some of the information collected by the disassembler, based on the specific instruction:

    RAW bytes (hex): C7 85 68 FF FF FF 00 00 00 00
    Instr. length: 10
    Print instruction fields:
            Located Prefixes 0:
    
            OP: 0xC7
            mod_reg_rm: 0x85
            disp (4): 0xFFFFFF68
            Iimm: 0x0
    

    Lacks the mnemonic representation: from the previous machine code is not able to produce the "MOV..." instruction, for example.

    Goals

    The goal is almost easy: partially implement the mnemonic representation. I have already started during the weekend, likely tomorrow I will push the branch!

    Resources

    Progress

    Let's consider this example:

    [...other bytes...] 43 89 44 B5 00 01 00 [...other bytes...]
    


    Add a machine-readable output to dmidecode by jdelvare

    Description

    There have been repeated requests for a machine-friendly dmidecode output over the last decade. During Hack Week 19, 5 years ago, I prepared the code to support alternative output formats, but didn't have the time to go further. Last year, Jiri Hnidek from Red Hat Linux posted a proof-of-concept implementation to add JSON output support. This is a fairly large pull request which needs to be carefully reviewed and tested.

    Goals

    Review Jiri's work and provide constructive feedback. Merge the code if acceptable. Evaluate the costs and benefits of using a library such as json-c.


    Improve the picotm Transaction Manager by tdz

    Picotm is a system-level transaction manager. It provides transactional semantics to low-level C operations, such as

    • memory access,
    • modifying data structures,
    • (some) file I/O, and
    • common interfaces from the C Standard Library and POSIX.

    Picotm also handles error detection and recovery for all it's functionality. It's fully modular, so new functionality can be added.

    For the Hackweek, I want to dedicate some time to picotm. I want to finish some of the refactoring work that I have been working on. If there's time left, I'd like to investigate two-phase commits and how to support them in picotm.

    Picotm is available at http://picotm.org/.


    GHC-9.14 and split Hadrian from GHC build by osukup

    Description

    Prepare openSUSE Tumbleweed project for new GHC Haskell compiler and separate builder (Hadrian) from GHC build

    Goals

    • have GHC-9.14 project with working compiler and if possible filled with packageset
    • have Hadrian in own package built with bootstrap compiler to separate Hadrian bootstrap from ghc bootstrap

    Resources

    devel:languages:haskell

    d:l:h:ghc-9.12.x

    opensuse Haskell rpm macros

    opensuse haskell package gen project


    GHC-9.14 and split Hadrian from GHC build by osukup

    Description

    Prepare openSUSE Tumbleweed project for new GHC Haskell compiler and separate builder (Hadrian) from GHC build

    Goals

    • have GHC-9.14 project with working compiler and if possible filled with packageset
    • have Hadrian in own package built with bootstrap compiler to separate Hadrian bootstrap from ghc bootstrap

    Resources

    devel:languages:haskell

    d:l:h:ghc-9.12.x

    opensuse Haskell rpm macros

    opensuse haskell package gen project


    openSUSE on ZoL from OpenZFS project by jkohoutek

    Idea is to have SUSE system with OpenZFS as root FS.

    Why ZFS

    Ways in which ZFS is better than BTRFS

    Main goal

    Have OpenZFS as install option in the installer and utilize zedenv Boot Environment Manager for SUSE updates install

    Goals

    • synergy of ZFS with dracut, so snapshots are correctly added to the grub
    • synergy of zedenv with zypper
      • before every update snapshot is created
      • when new kernel or other package which requires reboot is about to be installed, the update will be processed to the new boot environment snapshot and grub configuration changed to boot to this new one
    • integrate Root on ZFS as install option to the YaST
    • configure Kiwi for the ZFS install images

    Completed goals

    • prepare ZFS pool compatible with openSUSE installation ✓
    • install openSUSE with root on ZFS ✓
    • boot to the prepared and installed system ✓

    Current progress

    Resources: