Project Description

I want for long time to get my hands dirty with go and webassembly. we have (openqa-mon)[https://github.com/grisu48/openqa-mon] which is a monitoring tool for OpenQA. The aiming is to learn a bit more about those tools and convert the project in webassembly

Goal for this Hackweek

  • Make openqa-mon a webapp

During the process i believe i can also:

  • identify future features
  • Make documentation
  • write some tests for openqa-mon(??)

Resources

  • https://github.com/grisu48/openqa-mon
  • https://github.com/golang/go/wiki/WebAssembly#getting-started

Looking for hackers with the skills:

webassembly go golang web javascript

This project is part of:

Hack Week 20

Activity

  • almost 5 years ago: pdostal liked this project.
  • almost 5 years ago: ph03nix liked this project.
  • almost 5 years ago: dfaggioli liked this project.
  • almost 5 years ago: ybonatakis added keyword "webassembly" to this project.
  • almost 5 years ago: ybonatakis added keyword "go" to this project.
  • almost 5 years ago: ybonatakis added keyword "golang" to this project.
  • almost 5 years ago: ybonatakis added keyword "web" to this project.
  • almost 5 years ago: ybonatakis added keyword "javascript" to this project.
  • almost 5 years ago: ybonatakis started this project.
  • almost 5 years ago: ybonatakis originated this project.

  • Comments

    • ph03nix
      almost 5 years ago by ph03nix | Reply

      Love it! Let me know if I can help you with openqa-mon tests, PR are much appreciated there! add-emoji

    • ybonatakis
      almost 5 years ago by ybonatakis | Reply

      So the results were not the expected but i guess i learned a few things during this. briefly, the implementation of openqa-mon uses syscall library. this alone was enough to block the idea as it will require significant changes to get accomplished. Particularly, the dependency on Tui.go should be altered or removed. The submodule syscall/js provides some access to the WebAssembly host environment when using the js/wasm architecture. The attempt to use this ended with massive changes either to tui.go or/and openqa-mon.go. With those changes in place and a bit of javascript, an openqa-mon in webassembly project is possible. While thinking how to solve the problem above i found the "browsix"[0]. Another webassmbly app to run console on the browser written in Go. I thought to try out this and call the openqa-mon as utility of the browsix shell. this also failed due to some packages' dependencies during the build.

      What actually i had accomplished during this hackweek was - to find and fix a bug on openqa-mon. - Add a single test for the fix - Learn some things about webassembly and go, and refresh some javascript - Create the additional files to launch the openqa-mon.wasm (server.go and openqa-mon_web.wasm)

      [0] https://github.com/plasma-umass/browsix

    Similar Projects

    Rewrite Distrobox in go (POC) by fabriziosestito

    Description

    Rewriting Distrobox in Go.

    Main benefits:

    • Easier to maintain and to test
    • Adapter pattern for different container backends (LXC, systemd-nspawn, etc.)

    Goals

    • Build a minimal starting point with core commands
    • Keep the CLI interface compatible: existing users shouldn't notice any difference
    • Use a clean Go architecture with adapters for different container backends
    • Keep dependencies minimal and binary size small
    • Benchmark against the original shell script

    Resources

    • Upstream project: https://github.com/89luca89/distrobox/
    • Distrobox site: https://distrobox.it/
    • ArchWiki: https://wiki.archlinux.org/title/Distrobox


    Play with the userfaultfd(2) system call and download on demand using HTTP Range Requests with Golang by rbranco

    Description

    The userfaultfd(2) is a cool system call to handle page faults in user-space. This should allow me to list the contents of an ISO or similar archive without downloading the whole thing. The userfaultfd(2) part can also be done in theory with the PROT_NONE mprotect + SIGSEGV trick, for complete Unix portability, though reportedly being slower.

    Goals

    1. Create my own library for userfaultfd(2) in Golang.
    2. Create my own library for HTTP Range Requests.
    3. Complete portability with Unix.
    4. Benchmarks.
    5. Contribute some tests to LTP.

    Resources

    1. https://docs.kernel.org/admin-guide/mm/userfaultfd.html
    2. https://www.cons.org/cracauer/cracauer-userfaultfd.html


    HTTP API for nftables by crameleon

    Background

    The idea originated in https://progress.opensuse.org/issues/164060 and is about building RESTful API which translates authorized HTTP requests to operations in nftables, possibly utilizing libnftables-json(5).

    Originally, I started developing such an interface in Go, utilizing https://github.com/google/nftables. The conversion of string networks to nftables set elements was problematic (unfortunately no record of details), and I started a second attempt in Python, which made interaction much simpler thanks to native nftables Python bindings.

    Goals

    1. Find and track the issue with google/nftables
    2. Revisit and polish the Go or Python code (prefer Go, but possibly depends on implementing missing functionality), primarily the server component
    3. Finish functionality to interact with nftables sets (retrieving and updating elements), which are of interest for the originating issue
    4. Align test suite
    5. Packaging

    Resources

    • https://git.netfilter.org/nftables/tree/py/src/nftables.py
    • https://git.com.de/Georg/nftables-http-api (to be moved to GitHub)
    • https://build.opensuse.org/package/show/home:crameleon:containers/pytest-nftables-container

    Results

    • Started new https://github.com/tacerus/nftables-http-api.
    • First Go nftables issue was related to set elements needing to be added with different start and end addresses - coincidentally, this was recently discovered by someone else, who added a useful helper function for this: https://github.com/google/nftables/pull/342.
    • Further improvements submitted: https://github.com/google/nftables/pull/347.

    Side results

    Upon starting to unify the structure and implementing more functionality, missing JSON output support was noticed for some subcommands in libnftables. Submitted patches here as well:

    • https://lore.kernel.org/netfilter-devel/20251203131736.4036382-2-georg@syscid.com/T/#u


    Cluster API Provider for Harvester by rcase

    Project Description

    The Cluster API "infrastructure provider" for Harvester, also named CAPHV, makes it possible to use Harvester with Cluster API. This enables people and organisations to create Kubernetes clusters running on VMs created by Harvester using a declarative spec.

    The project has been bootstrapped in HackWeek 23, and its code is available here.

    Work done in HackWeek 2023

    • Have a early working version of the provider available on Rancher Sandbox : *DONE *
    • Demonstrated the created cluster can be imported using Rancher Turtles: DONE
    • Stretch goal - demonstrate using the new provider with CAPRKE2: DONE and the templates are available on the repo

    DONE in HackWeek 24:

    DONE in 2025 (out of Hackweek)

    • Support of ClusterClass
    • Add to clusterctl community providers, you can add it directly with clusterctl
    • Testing on newer versions of Harvester v1.4.X and v1.5.X
    • Support for clusterctl generate cluster ...
    • Improve Status Conditions to reflect current state of Infrastructure
    • Improve CI (some bugs for release creation)

    Goals for HackWeek 2025

    • FIRST and FOREMOST, any topic is important to you
    • Add e2e testing
    • Certify the provider for Rancher Turtles
    • Add Machine pool labeling
    • Add PCI-e passthrough capabilities.
    • Other improvement suggestions are welcome!

    Thanks to @isim and Dominic Giebert for their contributions!

    Resources

    Looking for help from anyone interested in Cluster API (CAPI) or who wants to learn more about Harvester.

    This will be an infrastructure provider for Cluster API. Some background reading for the CAPI aspect:


    Add support for todo.sr.ht to git-bug by mcepl

    Description

    I am a big fan of distributed issue tracking and the best (and possibly) only credible such issue tracker is now git-bug. It has bridges to another centralized issue trackers, so user can download (and modify) issues on GitHub, GitLab, Launchpad, Jira). I am also a fan of SourceHut, which has its own issue tracker, so I would like it bridge the two. Alas, I don’t know much about Go programming language (which the git-bug is written) and absolutely nothing about GraphQL (which todo.sr.ht uses for communication). AI to the rescue. I would like to vibe code (and eventually debug and make functional) bridge to the SourceHut issue tracker.

    Goals

    Functional fix for https://github.com/git-bug/git-bug/issues/1024

    Resources

    • anybody how actually understands how GraphQL and authentication on SourceHut (OAuth2) works


    Updatecli Autodiscovery supporting WASM plugins by olblak

    Description

    Updatecli is a Golang Update policy engine that allow to write Update policies in YAML manifest. Updatecli already has a plugin ecosystem for common update strategies such as automating Dockerfile or Kubernetes manifest from Git repositories.

    This is what we call autodiscovery where Updatecli generate manifest and apply them dynamically based on some context.

    Obviously, the Updatecli project doesn't accept plugins specific to an organization.

    I saw project using different languages such as python, C#, or JS to generate those manifest.

    It would be great to be able to share and reuse those specific plugins

    During the HackWeek, I'll hang on the Updatecli matrix channel

    https://matrix.to/#/#Updatecli_community:gitter.im

    Goals

    Implement autodiscovery plugins using WASM. I am planning to experiment with https://github.com/extism/extism

    To build a simple WASM autodiscovery plugin and run it from Updatecli

    Resources

    • https://github.com/extism/extism
    • https://github.com/updatecli/updatecli
    • https://www.updatecli.io/docs/core/autodiscovery/
    • https://matrix.to/#/#Updatecli_community:gitter.im


    Rewrite Distrobox in go (POC) by fabriziosestito

    Description

    Rewriting Distrobox in Go.

    Main benefits:

    • Easier to maintain and to test
    • Adapter pattern for different container backends (LXC, systemd-nspawn, etc.)

    Goals

    • Build a minimal starting point with core commands
    • Keep the CLI interface compatible: existing users shouldn't notice any difference
    • Use a clean Go architecture with adapters for different container backends
    • Keep dependencies minimal and binary size small
    • Benchmark against the original shell script

    Resources

    • Upstream project: https://github.com/89luca89/distrobox/
    • Distrobox site: https://distrobox.it/
    • ArchWiki: https://wiki.archlinux.org/title/Distrobox


    SUSE Health Check Tools by roseswe

    SUSE HC Tools Overview

    A collection of tools written in Bash or Go 1.24++ to make life easier with handling of a bunch of tar.xz balls created by supportconfig.

    Background: For SUSE HC we receive a bunch of supportconfig tar balls to check them for misconfiguration, areas for improvement or future changes.

    Main focus on these HC are High Availability (pacemaker), SLES itself and SAP workloads, esp. around the SUSE best practices.

    Goals

    • Overall improvement of the tools
    • Adding new collectors
    • Add support for SLES16

    Resources

    csv2xls* example.sh go.mod listprodids.txt sumtext* trails.go README.md csv2xls.go exceltest.go go.sum m.sh* sumtext.go vercheck.py* config.ini csvfiles/ getrpm* listprodids* rpmdate.sh* sumxls* verdriver* credtest.go example.py getrpm.go listprodids.go sccfixer.sh* sumxls.go verdriver.go

    docollall.sh* extracthtml.go gethostnamectl* go.sum numastat.go cpuvul* extractcluster.go firmwarebug* gethostnamectl.go m.sh* numastattest.go cpuvul.go extracthtml* firmwarebug.go go.mod numastat* xtr_cib.sh*

    $ getrpm -r pacemaker >> Product ID: 2795 (SUSE Linux Enterprise Server for SAP Applications 15 SP7 x86_64), RPM Name: +--------------+----------------------------+--------+--------------+--------------------+ | Package Name | Version | Arch | Release | Repository | +--------------+----------------------------+--------+--------------+--------------------+ | pacemaker | 2.1.10+20250718.fdf796ebc8 | x86_64 | 150700.3.3.1 | sle-ha/15.7/x86_64 | | pacemaker | 2.1.9+20250410.471584e6a2 | x86_64 | 150700.1.9 | sle-ha/15.7/x86_64 | +--------------+----------------------------+--------+--------------+--------------------+ Total packages found: 2


    Play with the userfaultfd(2) system call and download on demand using HTTP Range Requests with Golang by rbranco

    Description

    The userfaultfd(2) is a cool system call to handle page faults in user-space. This should allow me to list the contents of an ISO or similar archive without downloading the whole thing. The userfaultfd(2) part can also be done in theory with the PROT_NONE mprotect + SIGSEGV trick, for complete Unix portability, though reportedly being slower.

    Goals

    1. Create my own library for userfaultfd(2) in Golang.
    2. Create my own library for HTTP Range Requests.
    3. Complete portability with Unix.
    4. Benchmarks.
    5. Contribute some tests to LTP.

    Resources

    1. https://docs.kernel.org/admin-guide/mm/userfaultfd.html
    2. https://www.cons.org/cracauer/cracauer-userfaultfd.html


    Create a go module to wrap happy-compta.fr by cbosdonnat

    Description

    https://happy-compta.fr is a tool for french work councils simple book keeping. While it does the job, it has no API to work with and it is tedious to enter loads of operations.

    Goals

    Write a go client module to be used as an API to programmatically manipulate the tool.

    Writing an example tool to load data from a CSV file would be good too.


    Kudos aka openSUSE Recognition Platform by lkocman

    Description

    Relevant blog post at news-o-o

    I started the Kudos application shortly after Leap 16.0 to create a simple, friendly way to recognize people for their work and contributions to openSUSE. There’s so much more to our community than just submitting requests in OBS or gitea we have translations (not only in Weblate), wiki edits, forum and social media moderation, infrastructure maintenance, booth participation, talks, manual testing, openQA test suites, and more!

    Goals

    • Kudos under github.com/openSUSE/kudos with build previews aka netlify

    • Have a kudos.opensuse.org instance running in production

    • Build an easy-to-contribute recognition platform for the openSUSE community a place where everyone can send and receive appreciation for their work, across all areas of contribution.

    • In the future, we could even explore reward options such as vouchers for t-shirts or other community swag, small tokens of appreciation to make recognition more tangible.

    Resources

    (Do not create new badge requests during hackweek, unless you'll make the badge during hackweek)