Sonnenhut is a simple Pythong web app that provides basic info useful for planning photographic activities. The current iteration does the job, but it can be improved and extended in a number of ways.
If you are interested in photography and familiar with Python, you are welcome to join and contribute to the project.
Looking for hackers with the skills:
This project is part of:
Hack Week 15
Activity
Comments
Similar Projects
Enhance UV openQA helper script by mdonis
Description
A couple months ago an UV openQA helper script was created to help/automate the searching phase inside openQA for a given MU to test. The script searches inside all our openQA job groups (qam-sle) related with a given MU and generates an output suitable to add (copy & paste) inside the update log.
This is still a WIP and could use some enhancements.
Goals
- Move script from bash to python: this would be useful in case we want to include this into MTUI in the future. The script will be separate from MTUI for now. The idea is to have this as a CLI tool using the click library or something similar.
- Add option to look for jobs in other sections inside aggregated updates: right now, when looking for regression tests under aggregated updates for a given MU, the script only looks inside the Core MU job group. This is where most of the regression tests we need are located, but some MUs have their regression tests under the YaST/Containers/Security MU job groups. We should keep the Core MU group as a default, but add an option to be able to look into other job groups under aggregated updates.
- Remove the
-a
option: this option is used to indicate the update ID and is mandatory right now. This is a bit weird and goes against posix stardards. It was developed this way in order to avoid using positional parameters. This problem should be fixed if we move the script to python.
Some other ideas to consider:
- Look into the QAM dashboard API. This has more info on each MU, could use this to link general openQA build results, whether the related RR is approved or not, etc
- Make it easier to see if there's regression tests for a package in an openQA test build. Check if there's a possibility to search for tests that have the package name in them inside each testsuite.
- Unit testing?
More ideas TBD
Resources
https://github.com/os-autoinst/scripts/blob/master/openqa-search-maintenance-core-jobs
https://confluence.suse.com/display/maintenanceqa/Guide+on+how+to+test+Updates
Post-Hackweek update
All major features were implemented. Unit tests are still in progress, and project will be moved to the SUSE github org once everything's done. https://github.com/mjdonis/oqa-search
Symbol Relations by hli
Description
There are tools to build function call graphs based on parsing source code, for example, cscope
.
This project aims to achieve a similar goal by directly parsing the disasembly (i.e. objdump) of a compiled binary. The assembly code is what the CPU sees, therefore more "direct". This may be useful in certain scenarios, such as gdb/crash debugging.
Detailed description and Demos can be found in the README file:
Supports x86 for now (because my customers only use x86 machines), but support for other architectures can be added easily.
Tested with python3.6
Goals
Any comments are welcome.
Resources
https://github.com/lhb-cafe/SymbolRelations
symrellib.py: mplements the symbol relation graph and the disassembly parser
symrel_tracer*.py: implements tracing (-t option)
symrel.py: "cli parser"
Small healthcheck tool for Longhorn by mbrookhuis
Project Description
We have often problems (e.g. pods not starting) that are related to PVCs not running, cluster (nodes) not all up or deployments not running or completely running. This all prevents administration activities. Having something that can regular be run to validate the status of the cluster would be helpful, and not as of today do a lot of manual tasks.
As addition (read enough time), we could add changing reservation, adding new disks, etc. --> This didn't made it. But the scripts can easily be adopted.
This tool would decrease troubleshooting time, giving admins rights to the rancher GUI and could be used in automation.
Goal for this Hackweek
At the end we should have a small python tool that is doing a (very) basic health check on nodes, deployments and PVCs. First attempt was to make it in golang, but that was taking to much time.
Overview
This tool will run a simple healthcheck on a kubernetes cluster. It will perform the following actions:
node check: This will check all nodes, and display the status and the k3s version. If the status of the nodes is not "Ready" (this should be only reported), the cluster will be reported as having problems
deployment check: This check will list all deployments, and display the number of expected replicas and the used replica. If there are unused replicas this will be displayed. The cluster will be reported as having problems.
pvc check: This check will list of all pvc's, and display the status and the robustness. If the robustness is not "Healthy", the cluster will be reported as having problems.
If there is a problem registered in the checks, there will be a warning that the cluster is not healthy and the program will exit with 1.
The script has 1 mandatory parameter and that is the kubeconf of the cluster or of a node off the cluster.
The code is writen for Python 3.11, but will also work on 3.6 (the default with SLES15.x). There is a venv present that will contain all needed packages. Also, the script can be run on the cluster itself or any other linux server.
Installation
To install this project, perform the following steps:
- Create the directory /opt/k8s-check
mkdir /opt/k8s-check
- Copy all the file to this directory and make the following changes:
chmod +x k8s-check.py
Selenium with Python by xguo
Description
Try to create test case about Selenium base on Python
Goals
- Knowledge about Selenium with Python
- Create new test case about Selenium
Resources
https://selenium-python.readthedocs.io/ https://www.selenium.dev/
Ansible for add-on management by lmanfredi
Description
Machines can contains various combinations of add-ons and are often modified during the time.
The list of repos can change so I would like to create an automation able to reset the status to a given state, based on metadata available for these machines
Goals
Create an Ansible automation able to take care of add-on (repo list) configuration using metadata as reference
Resources
- Machines
- Repositories
- Developing modules
- Basic VM Guest management
- Module
zypper_repository_list
- ansible-collections community.general
Results
Created WIP project Ansible-add-on-openSUSE
Run local LLMs with Ollama and explore possible integrations with Uyuni by PSuarezHernandez
Description
Using Ollama you can easily run different LLM models in your local computer. This project is about exploring Ollama, testing different LLMs and try to fine tune them. Also, explore potential ways of integration with Uyuni.
Goals
- Explore Ollama
- Test different models
- Fine tuning
- Explore possible integration in Uyuni
Resources
- https://ollama.com/
- https://huggingface.co/
- https://apeatling.com/articles/part-2-building-your-training-data-for-fine-tuning/
Symbol Relations by hli
Description
There are tools to build function call graphs based on parsing source code, for example, cscope
.
This project aims to achieve a similar goal by directly parsing the disasembly (i.e. objdump) of a compiled binary. The assembly code is what the CPU sees, therefore more "direct". This may be useful in certain scenarios, such as gdb/crash debugging.
Detailed description and Demos can be found in the README file:
Supports x86 for now (because my customers only use x86 machines), but support for other architectures can be added easily.
Tested with python3.6
Goals
Any comments are welcome.
Resources
https://github.com/lhb-cafe/SymbolRelations
symrellib.py: mplements the symbol relation graph and the disassembly parser
symrel_tracer*.py: implements tracing (-t option)
symrel.py: "cli parser"
Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil
Join the Gitter channel! https://gitter.im/uyuni-project/hackweek
Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!
Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.
For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.
No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)
The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.
To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):
- Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
- Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
- Package management (install, remove, update...)
- Patching
- Applying any basic salt state (including a formula)
- Salt remote commands
- Bonus point: Java part for product identification, and monitoring enablement
- Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
- Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
- Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)
If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)
- If you don't have knowledge about some of the steps: ask the team
- If you still don't know what to do: switch to another distribution and keep testing.
This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)
Pending
FUSS
FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.
https://fuss.bz.it/
Seems to be a Debian 12 derivative, so adding it could be quite easy.
[W]
Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)[W]
Onboarding (salt minion from UI, salt minion from bootstrap script, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator) --> Working for all 3 options (salt minion UI, salt minion bootstrap script and salt-ssh minion from the UI).[W]
Package management (install, remove, update...) --> Installing a new package works, needs to test the rest.[I]
Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already). No patches detected. Do we support patches for Debian at all?[W]
Applying any basic salt state (including a formula)[W]
Salt remote commands[ ]
Bonus point: Java part for product identification, and monitoring enablement
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games