Project description
The project Verifree is about GPG key server. The goal is build a Key server, where users are able to verify the GPG keys. Admins should be also delete non valid keys. Verifree servers will be an internal servers only and NOT connect into the public GPG infrastructure.
The reason for the "private" GPG key serves is, that at the moment, if we want to used GPG key we trust external GPG key servers and we have no control for data there.
GPG keys on the server will be only for employees and we as admins will be able to control them.
We should have more then one server in the infrastructure and regularly sync data.
The long term goal is made this as a security add-on/application and be able offer it to SUSE customers to run their own GPG key serves
Goal for this Hackweek
Build basic application running on SLE/openSUSE OS. * be able to install it via an RPM * configure the app and have basic functions there. * have a salted it to be able run other servers on demand * setup basic work flow for the key management and verification
Resources
- as inspiration I found this: https://keys.openpgp.org/about
- as software I would like to try GNU GPL project: https://gitlab.com/hagrid-keyserver/hagrid
Any help from others is welcome.
Looking for hackers with the skills:
This project is part of:
Hack Week 21
Activity
Comments
-
over 2 years ago by crameleon | Reply
It would be cool if it still had an option to verify keys or signatures against a public, external, GPG server to catch irregularities - the benefit of the federated key servers on the internet is that if one gets compromised, one could get suspicious if they find a different key for a person on a different keyserver. Since we are only going to run one single keyserver internally, if the infrastructure gets compromised, there is no other party to ask for trust.
-
over 2 years ago by jzerebecki | Reply
There are dumps available, at least one of these sources seems to be current: https://github.com/SKS-Keyserver/sks-keyserver/wiki/KeydumpSources
-
over 2 years ago by mkoutny | Reply
Ideally, GPG keyserver should not be the source of trust. You have web of trust between individual keys and use the keyserver as an unreliable medium. You verify the keys locally with (sub)set of keys and you don't care if the server is or isn't compromised. (You only may be affected by its unavailability.)
Also, in my understanding, the internal keyserver is not supposed to serve to distribute any key but just those associated to SUSE accounts.
-
over 2 years ago by jzerebecki | Reply
Yes, GPG/OpenPGP currently has no mechanism to ensure one is up to date on revocations. So it is vulnerable against keyservers being made to not serve some revocations.
In theory it is possible to fix this, but I know of no practical implementation.
Even if you do not solve this, it is a good idea to ingest the updates from the keyserver gossip. If you do not you refuse information you can verify, which is even worse.
-
-
-
over 2 years ago by jzerebecki | Reply
Note that hagrid is both not GDPR compliant and removes important information (e.g. signatures and revocations used for Web of Trust) in a failed attempt at GDPR compliance: https://gitlab.com/hagrid-keyserver/hagrid/-/issues/151
I can think of two right now working ways for exchanging keys to avoid problems with GDPR: 1) Exchange keys by exporting, encrypting, ASCII armoring it and then attach it to a mail; exchange certification requests and confirmations by saving it as a text file, signing, encrypting, ASCII armoring it and then attach it to a mail. This reduce many things people stumbled over that were common even before the dos vulnerability of keyservers were more widely known. 2) Maintain the keys involved in a project in a git repository. Have the git repo contain a privacy policy that explains the consequences. For submitting their key people create a commit that is singed by the same key that it adds in ASCII armored form. This means the privacy policy is in the history of the commit they signed, so they could have read it. When someone ask for their info to be deleted, delete the repo and start a new history without this key. This has the advantage that everyone who already had a copy of the repo, notices on the next git pull and can easily understand which key was deleted. Without this advantage you could get into the situation where you never receive updates like revocation for a key without knowing it. (kernel.org uses a similar repo explained at https://lore.kernel.org/lkml/20190830143027.cffqda2vzggrtiko@chatter.i7.local/ .) You still need to use (1) for requesting and confirming certifications.
One could use a CI to make additions and updates to a git repo like in (2) self-service. Thus you could create a pull request and once CI passes it gets automatically merged. This CI job would allow adding a key that is trusted by existing ones with commit signature by the added key, for anything else require commit signature is valid and from a key already in this repo, allow updating when import old in new key doesn't add anything, allow editing docs, check generated data matches if touched, deny anything else.
The gpg reimplementation that hagrid uses as a library is https://docs.sequoia-pgp.org/sequoia_openpgp/ which is recommended.
Similar Projects
Hacking on sched_ext by flonnegren
Description
Sched_ext upstream has some interesting issues open for grabs:
Goals
Send patches to sched_ext upstream
Also set up perfetto to trace some of the example schedulers.
Resources
https://github.com/sched-ext/scx
Implement a CLI tool for Trento - trentoctl by nkopliku
Description
Implement a trentoctl
CLI for interacting with a trento installation
Goals
- learn rust
- implement an initial
trentoctl
tool to enhance trento automation - have fun
Resources
trento rust. TUIs listed on this other hackweek project Hack on rich terminal user interfaces
Better diff'ing experience by MSirringhaus
Description
For diff-ing directories, I usually like to use meld, but it struggles a lot with large trees. Experiment with writing a TUI meld-clone for diffing directories and files
Goals
Get first prototype going of a TUI that can show
- diffs of text-files
- diffs of directories.
Stretch goals
- Themes
- Filters (no whitespace, etc.)
- Live config changes (Show/hide line numbers, etc.)
Hack on isotest-ng - a rust port of isotovideo (os-autoinst aka testrunner of openQA) by szarate
Description
Some time ago, I managed to convince ByteOtter to hack something that resembles isotovideo but in Rust, not because I believe that Perl is dead, but more because there are certain limitations in the perl code (how it was written), and its always hard to add new functionalities when they are about implementing a new backend, or fixing bugs (Along with people complaining that Perl is dead, and that they don't like it)
In reality, I wanted to see if this could be done, and ByteOtter proved that it could be, while doing an amazing job at hacking a vnc console, and helping me understand better what RuPerl needs to work.
I plan to keep working on this for the next few years, and while I don't aim for feature completion or replacing isotovideo tih isotest-ng (name in progress), I do plan to be able to use it on a daily basis, using specialized tooling with interfaces, instead of reimplementing everything in the backend
Todo
- Add
make
targets for testability, e.g "spawn qemu and type" - Add image search matching algorithm
- Add a Null test distribution provider
- Add a Perl Test Distribution Provider
- Fix unittests https://github.com/os-autoinst/isotest-ng/issues/5
- Research OpenTofu how to add new hypervisors/baremetal to OpenTofu
- Add an interface to openQA cli
Goals
- Implement at least one of the above, prepare proposals for GSoC
- Boot a system via it's BMC
Resources
See https://github.com/os-autoinst/isotest-ng
SMB3 Server written entirely in Rust by dmulder
Description
Given the number of bugs frequently discovered in the Samba code caused by memory issues, it makes sense to re-write the smbd service purely in Rust code. Meanwhile, it would be wise to abandon backwards compatibility here with insecure protocol versions, and simply implement the SMB3 spec.
Goals
Get a simple server up and running and get it merged into upstream Samba (which now has Rust build support).
Resources
Migrate from Docker to Podman by tjyrinki_suse
Description
I'd like to continue my former work on containerization of several domains on a single server by changing from Docker containers to Podman containers. That will need an OS upgrade as well as Podman is not available in that old server version.
Goals
- Update OS.
- Migrate from Docker to Podman.
- Keep everything functional, including the existing "meanwhile done" additional Docker container that is actually being used already.
- Keep everything at least as secure as currently. One of the reasons of having the containers is to isolate risks related to services open to public Internet.
- Try to enable the Podman use in production.
- At minimum, learn about all of these topics.
- Optionally, improve Ansible side of things as well...
Resources
A search engine is one's friend. Migrating from Docker to Podman, and from docker-compose to podman-compose.
VulnHeap by r1chard-lyu
Description
The VulnHeap project is dedicated to the in-depth analysis and exploitation of vulnerabilities within heap memory management. It focuses on understanding the intricate workflow of heap allocation, chunk structures, and bin management, which are essential to identifying and mitigating security risks.
Goals
- Familiarize with heap
- Heap workflow
- Chunk and bin structure
- Vulnerabilities
- Vulnerability
- Use after free (UAF)
- Heap overflow
- Double free
- Use Docker to create a vulnerable environment and apply techniques to exploit it
Resources
- https://heap-exploitation.dhavalkapil.com/divingintoglibc_heap
- https://raw.githubusercontent.com/cloudburst/libheap/master/heap.png
- https://github.com/shellphish/how2heap?tab=readme-ov-file
Model checking the BPF verifier by shunghsiyu
Project Description
BPF verifier plays a crucial role in securing the system (though less so now that unprivileged BPF is disabled by default in both upstream and SLES), and bugs in the verifier has lead to privilege escalation vulnerabilities in the past (e.g. CVE-2021-3490).
One way to check whether the verifer has bugs to use model checking (a formal verification technique), in other words, build a abstract model of how the verifier operates, and then see if certain condition can occur (e.g. incorrect calculation during value tracking of registers) by giving both the model and condition to a solver.
For the solver I will be using the Z3 SMT solver to do the checking since it provide a Python binding that's relatively easy to use.
Goal for this Hackweek
Learn how to use the Z3 Python binding (i.e. Z3Py) to build a model of (part of) the BPF verifier, probably the part that's related to value tracking using tristate numbers (aka tnum), and then check that the algorithm work as intended.
Resources
- Formal Methods for the Informal Engineer: Tutorial #1 - The Z3 Theorem Prover and its accompanying notebook is a great introduction into Z3
- Has a section specifically on model checking
- Software Verification and Analysis Using Z3 a great example of using Z3 for model checking
- Sound, Precise, and Fast Abstract Interpretation with Tristate Numbers - existing work that use formal verification to prove that the multiplication helper used for value tracking work as intended
- [PATCH v5 net-next 00/12] bpf: rewrite value tracking in verifier - initial patch set that adds tristate number to the verifier
Bot to identify reserved data leak in local files or when publishing on remote repository by mdati
Description
Scope here is to prevent reserved data or generally "unwanted", to be pushed and saved on a public repository, i.e. on Github, causing disclosure or leaking of reserved informations.
The above definition of reserved or "unwanted" may vary, depending on the context: sometime secret keys or password are stored in data or configuration files or hardcoded in source code and depending on the scope of the archive or the level of security, it can be either wanted, permitted or not at all.
As main target here, secrets will be registration keys or passwords, to be detected and managed locally or in a C.I. pipeline.
Goals
Detection:
- Local detection: detect secret words present in local files;
- Remote detection: detect secrets in files, in pipelines, going to be transferred on a remote repository, i.e. via
git push
;
Reporting:
- report the result of detection on stderr and/or log files, noticed excluding the secret values.
Acton:
- Manage the detection, by either deleting or masking the impacted code or deleting/moving the file itself or simply notify it.
Resources
- Project repository, published on Github (link): m-dati/hkwk24;
- Reference folder: hkwk24/chksecret;
- First pull request (link): PR#1;
- Second PR, for improvements: PR#2;
- README.md and TESTS.md documentation files available in the repo root;
- Test subproject repository, for testing CI on push [TBD].
Notes
We use here some examples of secret words, that still can be improved.
The various patterns to match desired reserved words are written in a separated module, to be on demand updated or customized.
[Legend: TBD = to be done]
Kanidm: A safe and modern IDM system by firstyear
Kanidm is an IDM system written in Rust for modern systems authentication. The github repo has a detailed "getting started" on the readme.
In addition Kanidm has spawn a number of adjacent projects in the Rust ecosystem such as LDAP, Kerberos, Webauthn, and cryptography libraries.
In this hack week, we'll be working on Quokca, a certificate authority that supports PKCS11/TPM storage of keys, issuance of PIV certificates, and ACME without the feature gatekeeping implemented by other CA's like smallstep.
For anyone who wants to participate in Kanidm, we have documentation and developer guides which can help.
I'm happy to help and share more, so please get in touch!