Project Description
We would like to create a single interface for teams to manage our cloud governance.
We currently provide landing zones for AWS, GCP, and Azure, but in providing them, we’re becoming a central bottleneck, as most changes need to go through us. For our cloud usage to grow, we need to improve our processes, and delegate some responsibility when needed, especially in tasks where we’re not the subject-matter experts. We hope to empower everyone, including non-technical employees, to claim ownership over the processes that matter to them, and strengthen our current offerings.
Goal for this Hack Week
One of the major areas for improvement is the processes around tag maintenance. We use tags to manage account ownership, contact information, billing, alerting, and more. Because they’re a central part in our environments, we need to treat them as first-class citizens and ensure they’re always up-to-date. Our current setup setup isn't sufficient: we manage them in four separate repositories (change risk) and cannot easily allow non-technical employees to make changes.
This project was born out of our centralization efforts, a hope that we could manage our tags with care, and the desire to make a solid foundation for our governance to grow.
There is much we would like to accomplish, but here are the scoped tasks for Hack Week 21:
- To collect cloud tags for cloud providers (starting with AWS).
- To allow users to edit tags.
- To detect tag drift (notifications when the tags aren’t what they should be).
- To have Okta manage users/groups with SCIM.
In last year’s Hack Week, we experimented with a similar concept, but it covered cloud costs. This year, we took the lessons learned, and used parts of it to start our new project. You can view last year’s efforts at our GitHub project.
Resources
- Project Skyscraper’s design RFC: https://github.com/suse-skyscraper/rfc/pull/2
- Project Skyscraper’s server: https://github.com/suse-skyscraper/skyscraper
- Project Skyscraper’s helm charts: https://github.com/suse-skyscraper/skyscraper-helm-charts
This project is part of:
Hack Week 21
Activity
Comments
Be the first to comment!
Similar Projects
Install Uyuni on Kubernetes in cloud-native way by cbosdonnat
Description
For now installing Uyuni on Kubernetes requires running mgradm
on a cluster node... which is not what users would do in the Kubernetes world. The idea is to implement an installation based only on helm charts and probably an operator.
Goals
Install Uyuni from Rancher UI.
Resources
mgradm
code: https://github.com/uyuni-project/uyuni-tools- Uyuni operator: https://github.com/cbosdo/uyuni-operator
ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini
Description
ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration
and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal
or local installations. However, the goal is to expand its use to encompass all installations of
Kubernetes for local development purposes.
It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based
configuration config.yml
.
Overview
- Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
- Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
- Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
- Extensibility: Easily extend functionality with custom plugins and configurations.
- Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
- Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.
Features
- distribution and engine independence. Install your favorite kubernetes engine with your package
manager, execute one script and you'll have a complete working environment at your disposal.
- Basic config approach. One single
config.yml
file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...). - Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
- Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
- Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
- One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
- Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.
Planned features (Wishlist / TODOs)
- Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games
kubectl clone: Seamlessly Clone Kubernetes Resources Across Multiple Rancher Clusters and Projects by dpunia
Description
kubectl clone is a kubectl plugin that empowers users to clone Kubernetes resources across multiple clusters and projects managed by Rancher. It simplifies the process of duplicating resources from one cluster to another or within different namespaces and projects, with optional on-the-fly modifications. This tool enhances multi-cluster resource management, making it invaluable for environments where Rancher orchestrates numerous Kubernetes clusters.
Goals
- Seamless Multi-Cluster Cloning
- Clone Kubernetes resources across clusters/projects with one command.
- Simplifies management, reduces operational effort.
Resources
Rancher & Kubernetes Docs
- Rancher API, Cluster Management, Kubernetes client libraries.
Development Tools
- Kubectl plugin docs, Go programming resources.
Building and Installing the Plugin
- Set Environment Variables: Export the Rancher URL and API token:
export RANCHER_URL="https://rancher.example.com"
export RANCHER_TOKEN="token-xxxxx:xxxxxxxxxxxxxxxxxxxx"
- Build the Plugin: Compile the Go program:
go build -o kubectl-clone ./pkg/
- Install the Plugin:
Move the executable to a directory in your
PATH
:
mv kubectl-clone /usr/local/bin/
Ensure the file is executable:
chmod +x /usr/local/bin/kubectl-clone
- Verify the Plugin Installation: Test the plugin by running:
kubectl clone --help
You should see the usage information for the kubectl-clone
plugin.
Usage Examples
- Clone a Deployment from One Cluster to Another:
kubectl clone --source-cluster c-abc123 --type deployment --name nginx-deployment --target-cluster c-def456 --new-name nginx-deployment-clone
- Clone a Service into Another Namespace and Modify Labels:
Integrate Backstage with Rancher Manager by nwmacd
Description
Backstage (backstage.io) is an open-source, CNCF project that allows you to create your own developer portal. There are many plugins for Backstage.
This could be a great compliment to Rancher Manager.
Goals
Learn and experiment with Backstage and look at how this could be integrated with Rancher Manager. Goal is to have some kind of integration completed in this Hack week.
Progress
Screen shot of home page at the end of Hackweek:
Day One
- Got Backstage running locally, understanding configuration with HTTPs.
- Got Backstage embedded in an IFRAME inside of Rancher
- Added content into the software catalog (see: https://backstage.io/docs/features/techdocs/getting-started/)
- Understood more about the entity model
Day Two
- Connected Backstage to the Rancher local cluster and configured the Kubernetes plugin.
- Created Rancher theme to make the light theme more consistent with Rancher
Days Three and Day Four
Created two backend plugins for Backstage:
- Catalog Entity Provider - this imports users from Rancher into Backstage
- Auth Provider - uses the proxied sign-in pattern to check the Rancher session cookie, to user that to authenticate the user with Rancher and then log them into Backstage by connecting this to the imported User entity from the catalog entity provider plugin.
With this in place, you can single-sign-on between Rancher and Backstage when it is deployed within Rancher. Note this is only when running locally for development at present
Day Five
- Start to build out a production deployment for all of the above
- Made some progress, but hit issues with the authentication and proxying when running proxied within Rancher, which needs further investigation
Dartboard TUI by IValentin
Description
Our scalability and performance testing swiss-army knife tool Dartboard is a major WIP so why not add more scope creep? Dartboard is a cli tool which enables users to:
- Define a "Dart" config file as YAML which defines the various components to be created/setup when Dartboard runs its commands
- Spin up infrastructure utilizing opentofu/terraform providers
- Setup K3s or RKE2 clusters on the newly created infrastructure
- Deploy Rancher (with or without downstream cluster), rancher-monitoring (Grafana + Prometheus)
- Create resources in-bulk within the newly created Rancher cluster (ConfigMaps, Secrets, Users, Roles, etc.)
- Run various performance and scalability tests via k6
- Export/Import various tracked metrics (WIP)
Given all these features (and the features to come), it can be difficult to onboard and transfer knowledge of the tool. With a TUI, Dartboard's usage complexity can be greatly reduced!
Goals
- Create a TUI for Dartboard's "subcommands"
- Gain more familiarity with Dartboard and create a more user-friendly interface to enable others to use it
- Stretch Create a TUI workflow for generating a Dart file
Resources
https://github.com/charmbracelet/bubbletea
Learn enough Golang and hack on CoreDNS by jkuzilek
Description
I'm implementing a split-horizon DNS for my home Kubernetes cluster to be able to access my internal (and external) services over the local network through public domains. I managed to make a PoC with the k8s_gateway plugin for CoreDNS. However, I soon found out it responds with IPs for all Gateways assigned to HTTPRoutes, publishing public IPs as well as the internal Loadbalancer ones.
To remedy this issue, a simple filtering mechanism has to be implemented.
Goals
- Learn an acceptable amount of Golang
- Implement GatewayClass (and IngressClass) filtering for k8s_gateway
- Deploy on homelab cluster
- Profit?
Resources
- https://github.com/ori-edge/k8s_gateway/issues/36
- https://github.com/coredns/coredns/issues/2465#issuecomment-593910983
EDIT: Feature mostly complete. An unfinished PR lies here. Successfully tested working on homelab cluster.
WebUI for your data by avicenzi
A single place to view every bit of data you have.
Problem
You have too much data and you are a data hoarder.
- Family photos and videos.
- Lots of eBooks, TV Shows, Movies, and else.
- Boxes full of papers (taxes, invoices, IDs, certificates, exams, and else).
- Bank account statements (multiple currencies, countries, and people).
Maybe you have some data on S3, some on your NAS, and some on your local PC.
- How do you get it all together?
- How do you link a bank transaction to a product invoice?
- How to tag any object type and create a collection out of it (mix videos, photos, PDFs, transactions)?
- How to store this? file/folder structure does not work, everything is linked together
Project Description
The idea is a place where you can throw all your data, photos, videos, documents, binaries, and else.
Create photo albums, document collections, add tags across multiple file-formats, link content, and else.
The UI should be easy to use, where the data is not important for now (could be all S3 or local drive).
Similar proposals
The closest I found so far is https://perkeep.org/, but this is not what I'm looking for.
Goal for this Hackweek
Create a web UI, in Svelte ideally, perhaps React.
It should be able to show photos and videos at least.
Resources
None so far, this is just an idea.
ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini
Description
ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration
and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal
or local installations. However, the goal is to expand its use to encompass all installations of
Kubernetes for local development purposes.
It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based
configuration config.yml
.
Overview
- Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
- Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
- Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
- Extensibility: Easily extend functionality with custom plugins and configurations.
- Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
- Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.
Features
- distribution and engine independence. Install your favorite kubernetes engine with your package
manager, execute one script and you'll have a complete working environment at your disposal.
- Basic config approach. One single
config.yml
file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...). - Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
- Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
- Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
- One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
- Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.
Planned features (Wishlist / TODOs)
- Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for
terraform-provider-feilong by e_bischoff
Project Description
People need to test operating systems and applications on s390 platform.
Installation from scratch solutions include:
- just deploy and provision manually (with the help of
ftpboot
script, if you are at SUSE) - use
s3270
terminal emulation (used byopenQA
people?) - use
LXC
from IBM to start CP commands and analyze the results - use
zPXE
to do some PXE-alike booting (used by theorthos
team?) - use
tessia
to install from scratch using autoyast - use
libvirt
for s390 to do some nested virtualization on some already deployed z/VM system - directly install a Linux kernel on a LPAR and use
kvm
+libvirt
from there
Deployment from image solutions include:
- use
ICIC
web interface (openstack
in disguise, contributed by IBM) - use
ICIC
from theopenstack
terraform
provider (used byRancher
QA) - use
zvm_ansible
to controlSMAPI
- connect directly to
SMAPI
low-level socket interface
IBM Cloud Infrastructure Center (ICIC
) harnesses the Feilong API, but you can use Feilong
without installing ICIC
, provided you set up a "z/VM cloud connector" into one of your VMs following this schema.
What about writing a terraform Feilong
provider, just like we have the terraform
libvirt
provider? That would allow to transparently call Feilong
from your main.tf files to deploy and destroy resources on your system/z.
Other Feilong-based solutions include:
- make
libvirt
Feilong-aware - simply call
Feilong
from shell scripts withcurl
- use
zvmconnector
client python library from Feilong - use
zthin
part of Feilong to directly commandSMAPI
.
Goal for Hackweek 23
My final goal is to be able to easily deploy and provision VMs automatically on a z/VM system, in a way that people might enjoy even outside of SUSE.
My technical preference is to write a terraform provider plugin, as it is the approach that involves the least software components for our deployments, while remaining clean, and compatible with our existing development infrastructure.
Goals for Hackweek 24
Feilong provider works and is used internally by SUSE Manager team. Let's push it forward!
Let's add support for fiberchannel disks and multipath.
Goals for Hackweek 25
- Finish support for fiberchannel disks and multipath
- Fix problems with registration on hashicorp providers registry
Cobbler Angular Web Interface by SchoolGuy
Project Description
The old Cobbler webinterface was built into the server, leading to a huge dependency stack only required for a few people.
Goal for this Hackweek
The project should aim to finalize the first prototype of the new Angular based web interface.
A secondary goal of this hackweek is to learn a lot of Angular.
Update for Hackweek 24
The GH project received some traction since I have some vacation. As such it is my aim to get a first alpha released to close the milestone 0.0.1 (or whatever version I can release with semantic release).
Resources
SUSE AI Meets the Game Board by moio
Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
Results: Infrastructure Achievements
We successfully built and automated a containerized stack to support our AI experiments. This included:
- a Fully-Automated, One-Command, GPU-accelerated Kubernetes setup: we created an OpenTofu based script, tofu-tag, to deploy SUSE's RKE2 Kubernetes running on CUDA-enabled nodes in AWS, powered by openSUSE with GPU drivers and gpu-operator
- Containerization of the TAG and PyTAG frameworks: TAG (Tabletop AI Games) and PyTAG were patched for seamless deployment in containerized environments. We automated the container image creation process with GitHub Actions. Our forks (PRs upstream upcoming):
./deploy.sh
and voilà - Kubernetes running PyTAG (k9s
, above) with GPU acceleration (nvtop
, below)
Results: Game Design Insights
Our project focused on modeling and analyzing two card games of our own design within the TAG framework:
- Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
- AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
- Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .
- more about Bamboo on Dario's site
- more about R3 on Silvio's site (italian, translation coming)
- more about Totoro on Silvio's site
A family picture of our card games in progress. From the top: Bamboo, Totoro, R3
Results: Learning, Collaboration, and Innovation
Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:
- "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
- AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
- GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
- Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.
Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!
The Context: AI + Board Games